On the existence of infinite, non-trivial F-sets
In this paper we prove a conjecture of J. Andrade, S.J. Miller, K. Pratt and M. Trinh, showing the existence of a non-trivial infinite F-set over Fq[x] for every fixed q. We also provide the proof of a refinement of the conjecture, involving the notion of width of an F-set, which is a natural number...
Автори: | Ferraguti, A, Micheli, G |
---|---|
Формат: | Journal article |
Опубліковано: |
Elsevier
2016
|
Схожі ресурси
Схожі ресурси
-
Existence of multiple non-trivial solutions for a nonlocal problem
за авторством: Xianyong Yang, та інші
Опубліковано: (2019-03-01) -
Existence and multiplicity of non-trivial solutions for the fractional Schrödinger–Poisson system with superlinear terms
за авторством: Yan He, та інші
Опубліковано: (2019-01-01) -
The triviality and non-triviality of Lambda-Phi-4 model in different spacetime dimensions
за авторством: Foong, See Kit.
Опубліковано: (2012) -
Non-linear composition and infinite conformal symmetry of topologically non-trivial solutions in $$(3+1)$$ ( 3 + 1 ) -dimensional Yang–Mills theory
за авторством: Fabrizio Canfora
Опубліковано: (2021-11-01) -
A conjecture implying the existence of non-convex Chebyshev sets in infinite-dimensional Hilbert spaces
за авторством: Biagio Ricceri
Опубліковано: (2010-12-01)