Ranks and symmetric ranks of cubic surfaces
We study cubic surfaces as symmetric tensors of format 4 × 4 × 4. We consider the non-symmetric tensor rank and the symmetric Waring rank of cubic surfaces, and show that the two notions coincide over the complex numbers. The corresponding algebraic problem concerns border ranks. We show that the no...
Autor principal: | Seigal, A |
---|---|
Formato: | Journal article |
Idioma: | English |
Publicado em: |
Elsevier
2019
|
Registros relacionados
-
Ranks and singularities of cubic surfaces
por: Seigal, A, et al.
Publicado em: (2020) -
Real rank two geometry
por: Seigal, A, et al.
Publicado em: (2017) -
Ranks and approximations for families of cubic theories
por: N.D. Markhabatov
Publicado em: (2023-09-01) -
Ranks and approximations for families of cubic theories
por: N.D. Markhabatov
Publicado em: (2023-09-01) -
Set Evincing the Ranks with Respect to an Embedded Variety (Symmetric Tensor Rank and Tensor Rank
por: Edoardo Ballico
Publicado em: (2018-08-01)