The AdS Virasoro-Shapiro amplitude

<p>We present a constructive method to compute the AdS Virasoro-Shapiro amplitude, order by order in AdS curvature corrections. At&nbsp;<em>k</em><sup>th</sup>&nbsp;order the answer takes the form of a genus zero world-sheet integral involving weight 3<em>...

Szczegółowa specyfikacja

Opis bibliograficzny
Główni autorzy: Alday, LF, Hansen, T
Format: Journal article
Język:English
Wydane: Springer 2023
_version_ 1826311793158389760
author Alday, LF
Hansen, T
author_facet Alday, LF
Hansen, T
author_sort Alday, LF
collection OXFORD
description <p>We present a constructive method to compute the AdS Virasoro-Shapiro amplitude, order by order in AdS curvature corrections. At&nbsp;<em>k</em><sup>th</sup>&nbsp;order the answer takes the form of a genus zero world-sheet integral involving weight 3<em>k</em>&nbsp;single-valued multiple polylogarithms. The coefficients in our ansatz are fixed, order by order, by requiring: crossing symmetry; the correct supergravity limit; the correct structure of poles, determined by dispersive sum rules; and the dimensions of the first few Konishi-like operators, available from integrability. We explicitly construct the first two curvature corrections. Our final answer then reproduces all localisation results and all CFT data available from integrability, to this order, and produces a wealth of new CFT data for planar <em>N</em> = 4 SYM at strong coupling.</p>
first_indexed 2024-03-07T08:16:29Z
format Journal article
id oxford-uuid:fe5fa424-7340-41f6-a37e-4bbd78c3835c
institution University of Oxford
language English
last_indexed 2024-03-07T08:16:29Z
publishDate 2023
publisher Springer
record_format dspace
spelling oxford-uuid:fe5fa424-7340-41f6-a37e-4bbd78c3835c2023-12-22T06:31:29ZThe AdS Virasoro-Shapiro amplitudeJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:fe5fa424-7340-41f6-a37e-4bbd78c3835cEnglishSymplectic ElementsSpringer2023Alday, LFHansen, T<p>We present a constructive method to compute the AdS Virasoro-Shapiro amplitude, order by order in AdS curvature corrections. At&nbsp;<em>k</em><sup>th</sup>&nbsp;order the answer takes the form of a genus zero world-sheet integral involving weight 3<em>k</em>&nbsp;single-valued multiple polylogarithms. The coefficients in our ansatz are fixed, order by order, by requiring: crossing symmetry; the correct supergravity limit; the correct structure of poles, determined by dispersive sum rules; and the dimensions of the first few Konishi-like operators, available from integrability. We explicitly construct the first two curvature corrections. Our final answer then reproduces all localisation results and all CFT data available from integrability, to this order, and produces a wealth of new CFT data for planar <em>N</em> = 4 SYM at strong coupling.</p>
spellingShingle Alday, LF
Hansen, T
The AdS Virasoro-Shapiro amplitude
title The AdS Virasoro-Shapiro amplitude
title_full The AdS Virasoro-Shapiro amplitude
title_fullStr The AdS Virasoro-Shapiro amplitude
title_full_unstemmed The AdS Virasoro-Shapiro amplitude
title_short The AdS Virasoro-Shapiro amplitude
title_sort ads virasoro shapiro amplitude
work_keys_str_mv AT aldaylf theadsvirasoroshapiroamplitude
AT hansent theadsvirasoroshapiroamplitude
AT aldaylf adsvirasoroshapiroamplitude
AT hansent adsvirasoroshapiroamplitude