Homogenization of a one-dimensional spectral problem for a singularly perturbed elliptic operator with Neumann boundary conditions
We study the asymptotic behavior of the first eigenvalue and eigen- function of a one-dimensional periodic elliptic operator with Neumann boundary conditions. The second order elliptic equation is not self-adjoint and is singularly perturbed since, denoting by (Epsilon) the period, each derivative i...
Main Authors: | Allaire, G, Capdeboscq, Y, Puel, M |
---|---|
格式: | Journal article |
出版: |
American Institute of Mathematical Sciences
2012
|
相似書籍
-
Singular elliptic problems with Dirichlet or mixed Dirichlet-Neumann non-homogeneous boundary conditions
由: Tomas Godoy
出版: (2022-12-01) -
Singular Integral Neumann Boundary Conditions for Semilinear Elliptic PDEs
由: Praveen Agarwal, et al.
出版: (2021-04-01) -
Homogenization of a spectral problem in neutronic multigroup diffusion
由: Allaire, G, et al.
出版: (2000) -
Homogenization of periodic elliptic degenerate PDEs with non-linear Neumann boundary condition
由: Mohamed Marzougue, et al.
出版: (2021-06-01) -
Multiplicity Results for a Perturbed Elliptic Neumann Problem
由: Gabriele Bonanno, et al.
出版: (2010-01-01)