Asymptotic normality of the size of the giant component in a random hypergraph
Recently, we adapted random walk arguments based on work of Nachmias and Peres, Martin-Löf, Karp and Aldous to give a simple proof of the asymptotic normality of the size of the giant component in the random graph G(n,p) above the phase transition. Here we show that the same method applies to the an...
Autors principals: | Bollobás, B, Riordan, O |
---|---|
Format: | Journal article |
Idioma: | English |
Publicat: |
2012
|
Ítems similars
-
Asymptotic normality of the size of the giant component in a random
hypergraph
per: Bollobas, B, et al.
Publicat: (2011) -
Asymptotic normality of the size of the giant component via a random
walk
per: Bollobas, B, et al.
Publicat: (2010) -
Asymptotic normality of the size of the giant component via a random walk
per: Bollobás, B, et al.
Publicat: (2011) -
Exploring hypergraphs with martingales
per: Bollobás, B, et al.
Publicat: (2017) -
Counting dense connected hypergraphs via the probabilistic method
per: Bollobás, B, et al.
Publicat: (2018)