Asymptotic normality of the size of the giant component in a random hypergraph
Recently, we adapted random walk arguments based on work of Nachmias and Peres, Martin-Löf, Karp and Aldous to give a simple proof of the asymptotic normality of the size of the giant component in the random graph G(n,p) above the phase transition. Here we show that the same method applies to the an...
Hlavní autoři: | Bollobás, B, Riordan, O |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
2012
|
Podobné jednotky
-
Asymptotic normality of the size of the giant component in a random
hypergraph
Autor: Bollobas, B, a další
Vydáno: (2011) -
Asymptotic normality of the size of the giant component via a random
walk
Autor: Bollobas, B, a další
Vydáno: (2010) -
Asymptotic normality of the size of the giant component via a random walk
Autor: Bollobás, B, a další
Vydáno: (2011) -
Exploring hypergraphs with martingales
Autor: Bollobás, B, a další
Vydáno: (2017) -
Counting dense connected hypergraphs via the probabilistic method
Autor: Bollobás, B, a další
Vydáno: (2018)