Circuit lower bounds from NP-hardness of MCSP under Turing reductions
The fundamental Minimum Circuit Size Problem is a well-known example of a problem that is neither known to be in P nor known to be NP-hard. Kabanets and Cai [18] showed that if MCSP is NP-hard under “natural" m-reductions, superpolynomial circuit lower bounds for exponential time would follow....
Egile Nagusiak: | Saks, M, Santhanam, R |
---|---|
Formatua: | Conference item |
Hizkuntza: | English |
Argitaratua: |
Schloss Dagstuhl
2020
|
Antzeko izenburuak
-
On the average-case complexity of MCSP and its variants
nork: Hirahara, S, et al.
Argitaratua: (2017) -
NP-hardness of minimum circuit size problem for OR-AND-MOD circuits
nork: Hirahara, S, et al.
Argitaratua: (2018) -
Strong co-nondeterministic lower bounds for NP cannot be proved feasibly
nork: Pich, J, et al.
Argitaratua: (2021) -
Why are proof complexity lower bounds hard?
nork: Pich, J, et al.
Argitaratua: (2020) -
Miss Jennifer Hickling, M.C.S.P.
nork: I. S. de Wet
Argitaratua: (1964-09-01)