Copeland dueling bandits

A version of the dueling bandit problem is addressed in which a Condorcet winner may not exist. Two algorithms are proposed that instead seek to minimize regret with respect to the Copeland winner, which, unlike the Condorcet winner, is guaranteed to exist. The first, Copeland Confidence Bound (CCB)...

全面介紹

書目詳細資料
Main Authors: Zoghi, M, Karnin, Z, Whiteson, S, Rijke, M
格式: Conference item
出版: 2015
實物特徵
總結:A version of the dueling bandit problem is addressed in which a Condorcet winner may not exist. Two algorithms are proposed that instead seek to minimize regret with respect to the Copeland winner, which, unlike the Condorcet winner, is guaranteed to exist. The first, Copeland Confidence Bound (CCB), is designed for small numbers of arms, while the second, Scalable Copeland Bandits (SCB), works better for large-scale problems. We provide theoretical results bounding the regret accumulated by CCB and SCB, both substantially improving existing results. Such existing results either offer bounds of the form $O(K \log T)$ but require restrictive assumptions, or offer bounds of the form $O(K^2 \log T)$ without requiring such assumptions. Our results offer the best of both worlds: $O(K \log T)$ bounds without restrictive assumptions.