A Riemannian perspective on matrix recovery and constrained optimization
<p>Nonlinear matrix recovery is an emerging paradigm in which specific classes of high-rank matrices can be recovered from an underdetermined linear system of measurements. In particular, we consider matrices whose columns, seen as data points, belong to an algebraic variety, namely, a set def...
मुख्य लेखक: | Goyens, F |
---|---|
अन्य लेखक: | Cartis, C |
स्वरूप: | थीसिस |
भाषा: | English |
प्रकाशित: |
2021
|
विषय: |
समान संसाधन
-
Nonlinear matrix recovery using optimization on the Grassmann manifold
द्वारा: Goyens, F, और अन्य
प्रकाशित: (2022) -
Control perspectives on numerical algorithms and matrix problems /
द्वारा: 444990 Bhaya, Amit, और अन्य
प्रकाशित: (2006) -
Basis set approach in the constrained interpolation profile method /
द्वारा: Utsumi, T., और अन्य
प्रकाशित: (2003) -
Efficient algorithms for compressed sensing and matrix completion
द्वारा: Wei, K
प्रकाशित: (2014) -
Fast iterative solvers for PDE-constrained optimization problems
द्वारा: Pearson, J
प्रकाशित: (2013)