A Riemannian perspective on matrix recovery and constrained optimization
<p>Nonlinear matrix recovery is an emerging paradigm in which specific classes of high-rank matrices can be recovered from an underdetermined linear system of measurements. In particular, we consider matrices whose columns, seen as data points, belong to an algebraic variety, namely, a set def...
Autore principale: | Goyens, F |
---|---|
Altri autori: | Cartis, C |
Natura: | Tesi |
Lingua: | English |
Pubblicazione: |
2021
|
Soggetti: |
Documenti analoghi
Documenti analoghi
-
Nonlinear matrix recovery using optimization on the Grassmann manifold
di: Goyens, F, et al.
Pubblicazione: (2022) -
Control perspectives on numerical algorithms and matrix problems /
di: 444990 Bhaya, Amit, et al.
Pubblicazione: (2006) -
Basis set approach in the constrained interpolation profile method /
di: Utsumi, T., et al.
Pubblicazione: (2003) -
Fast iterative solvers for PDE-constrained optimization problems
di: Pearson, J
Pubblicazione: (2013) -
Efficient algorithms for compressed sensing and matrix completion
di: Wei, K
Pubblicazione: (2014)