A Riemannian perspective on matrix recovery and constrained optimization
<p>Nonlinear matrix recovery is an emerging paradigm in which specific classes of high-rank matrices can be recovered from an underdetermined linear system of measurements. In particular, we consider matrices whose columns, seen as data points, belong to an algebraic variety, namely, a set def...
Hlavní autor: | Goyens, F |
---|---|
Další autoři: | Cartis, C |
Médium: | Diplomová práce |
Jazyk: | English |
Vydáno: |
2021
|
Témata: |
Podobné jednotky
-
Nonlinear matrix recovery using optimization on the Grassmann manifold
Autor: Goyens, F, a další
Vydáno: (2022) -
Control perspectives on numerical algorithms and matrix problems /
Autor: 444990 Bhaya, Amit, a další
Vydáno: (2006) -
Basis set approach in the constrained interpolation profile method /
Autor: Utsumi, T., a další
Vydáno: (2003) -
Fast iterative solvers for PDE-constrained optimization problems
Autor: Pearson, J
Vydáno: (2013) -
Efficient algorithms for compressed sensing and matrix completion
Autor: Wei, K
Vydáno: (2014)