A Riemannian perspective on matrix recovery and constrained optimization
<p>Nonlinear matrix recovery is an emerging paradigm in which specific classes of high-rank matrices can be recovered from an underdetermined linear system of measurements. In particular, we consider matrices whose columns, seen as data points, belong to an algebraic variety, namely, a set def...
1. Verfasser: | Goyens, F |
---|---|
Weitere Verfasser: | Cartis, C |
Format: | Abschlussarbeit |
Sprache: | English |
Veröffentlicht: |
2021
|
Schlagworte: |
Ähnliche Einträge
-
Nonlinear matrix recovery using optimization on the Grassmann manifold
von: Goyens, F, et al.
Veröffentlicht: (2022) -
Control perspectives on numerical algorithms and matrix problems /
von: 444990 Bhaya, Amit, et al.
Veröffentlicht: (2006) -
Basis set approach in the constrained interpolation profile method /
von: Utsumi, T., et al.
Veröffentlicht: (2003) -
Fast iterative solvers for PDE-constrained optimization problems
von: Pearson, J
Veröffentlicht: (2013) -
Efficient algorithms for compressed sensing and matrix completion
von: Wei, K
Veröffentlicht: (2014)