A Riemannian perspective on matrix recovery and constrained optimization
<p>Nonlinear matrix recovery is an emerging paradigm in which specific classes of high-rank matrices can be recovered from an underdetermined linear system of measurements. In particular, we consider matrices whose columns, seen as data points, belong to an algebraic variety, namely, a set def...
Autor Principal: | Goyens, F |
---|---|
Outros autores: | Cartis, C |
Formato: | Thesis |
Idioma: | English |
Publicado: |
2021
|
Subjects: |
Títulos similares
-
Nonlinear matrix recovery using optimization on the Grassmann manifold
por: Goyens, F, et al.
Publicado: (2022) -
Control perspectives on numerical algorithms and matrix problems /
por: 444990 Bhaya, Amit, et al.
Publicado: (2006) -
Basis set approach in the constrained interpolation profile method /
por: Utsumi, T., et al.
Publicado: (2003) -
Fast iterative solvers for PDE-constrained optimization problems
por: Pearson, J
Publicado: (2013) -
Efficient algorithms for compressed sensing and matrix completion
por: Wei, K
Publicado: (2014)