A Riemannian perspective on matrix recovery and constrained optimization
<p>Nonlinear matrix recovery is an emerging paradigm in which specific classes of high-rank matrices can be recovered from an underdetermined linear system of measurements. In particular, we consider matrices whose columns, seen as data points, belong to an algebraic variety, namely, a set def...
מחבר ראשי: | Goyens, F |
---|---|
מחברים אחרים: | Cartis, C |
פורמט: | Thesis |
שפה: | English |
יצא לאור: |
2021
|
נושאים: |
פריטים דומים
-
Nonlinear matrix recovery using optimization on the Grassmann manifold
מאת: Goyens, F, et al.
יצא לאור: (2022) -
Control perspectives on numerical algorithms and matrix problems /
מאת: 444990 Bhaya, Amit, et al.
יצא לאור: (2006) -
Basis set approach in the constrained interpolation profile method /
מאת: Utsumi, T., et al.
יצא לאור: (2003) -
Fast iterative solvers for PDE-constrained optimization problems
מאת: Pearson, J
יצא לאור: (2013) -
Efficient algorithms for compressed sensing and matrix completion
מאת: Wei, K
יצא לאור: (2014)