A Riemannian perspective on matrix recovery and constrained optimization
<p>Nonlinear matrix recovery is an emerging paradigm in which specific classes of high-rank matrices can be recovered from an underdetermined linear system of measurements. In particular, we consider matrices whose columns, seen as data points, belong to an algebraic variety, namely, a set def...
第一著者: | Goyens, F |
---|---|
その他の著者: | Cartis, C |
フォーマット: | 学位論文 |
言語: | English |
出版事項: |
2021
|
主題: |
類似資料
-
Nonlinear matrix recovery using optimization on the Grassmann manifold
著者:: Goyens, F, 等
出版事項: (2022) -
Control perspectives on numerical algorithms and matrix problems /
著者:: 444990 Bhaya, Amit, 等
出版事項: (2006) -
Basis set approach in the constrained interpolation profile method /
著者:: Utsumi, T., 等
出版事項: (2003) -
Fast iterative solvers for PDE-constrained optimization problems
著者:: Pearson, J
出版事項: (2013) -
Efficient algorithms for compressed sensing and matrix completion
著者:: Wei, K
出版事項: (2014)