A Riemannian perspective on matrix recovery and constrained optimization
<p>Nonlinear matrix recovery is an emerging paradigm in which specific classes of high-rank matrices can be recovered from an underdetermined linear system of measurements. In particular, we consider matrices whose columns, seen as data points, belong to an algebraic variety, namely, a set def...
Главный автор: | Goyens, F |
---|---|
Другие авторы: | Cartis, C |
Формат: | Диссертация |
Язык: | English |
Опубликовано: |
2021
|
Предметы: |
Схожие документы
-
Nonlinear matrix recovery using optimization on the Grassmann manifold
по: Goyens, F, и др.
Опубликовано: (2022) -
Control perspectives on numerical algorithms and matrix problems /
по: 444990 Bhaya, Amit, и др.
Опубликовано: (2006) -
Basis set approach in the constrained interpolation profile method /
по: Utsumi, T., и др.
Опубликовано: (2003) -
Fast iterative solvers for PDE-constrained optimization problems
по: Pearson, J
Опубликовано: (2013) -
Efficient algorithms for compressed sensing and matrix completion
по: Wei, K
Опубликовано: (2014)