A Riemannian perspective on matrix recovery and constrained optimization
<p>Nonlinear matrix recovery is an emerging paradigm in which specific classes of high-rank matrices can be recovered from an underdetermined linear system of measurements. In particular, we consider matrices whose columns, seen as data points, belong to an algebraic variety, namely, a set def...
Váldodahkki: | Goyens, F |
---|---|
Eará dahkkit: | Cartis, C |
Materiálatiipa: | Oahppočájánas |
Giella: | English |
Almmustuhtton: |
2021
|
Fáttát: |
Geahča maid
-
Nonlinear matrix recovery using optimization on the Grassmann manifold
Dahkki: Goyens, F, et al.
Almmustuhtton: (2022) -
Control perspectives on numerical algorithms and matrix problems /
Dahkki: 444990 Bhaya, Amit, et al.
Almmustuhtton: (2006) -
Basis set approach in the constrained interpolation profile method /
Dahkki: Utsumi, T., et al.
Almmustuhtton: (2003) -
Fast iterative solvers for PDE-constrained optimization problems
Dahkki: Pearson, J
Almmustuhtton: (2013) -
Efficient algorithms for compressed sensing and matrix completion
Dahkki: Wei, K
Almmustuhtton: (2014)