A Riemannian perspective on matrix recovery and constrained optimization
<p>Nonlinear matrix recovery is an emerging paradigm in which specific classes of high-rank matrices can be recovered from an underdetermined linear system of measurements. In particular, we consider matrices whose columns, seen as data points, belong to an algebraic variety, namely, a set def...
Huvudupphovsman: | Goyens, F |
---|---|
Övriga upphovsmän: | Cartis, C |
Materialtyp: | Lärdomsprov |
Språk: | English |
Publicerad: |
2021
|
Ämnen: |
Liknande verk
-
Nonlinear matrix recovery using optimization on the Grassmann manifold
av: Goyens, F, et al.
Publicerad: (2022) -
Control perspectives on numerical algorithms and matrix problems /
av: 444990 Bhaya, Amit, et al.
Publicerad: (2006) -
Basis set approach in the constrained interpolation profile method /
av: Utsumi, T., et al.
Publicerad: (2003) -
Fast iterative solvers for PDE-constrained optimization problems
av: Pearson, J
Publicerad: (2013) -
Efficient algorithms for compressed sensing and matrix completion
av: Wei, K
Publicerad: (2014)