Travelling wave phenomena in some degenerate reaction-diffusion equations
In this paper we study the existence of travelling wave solutions (t.w.s.), $u(x, t)=\phi(x−ct)$ for the equation $u_t=[D(u)u_x]_x+g(u) (*)$ where the reactive part g(u) is as in the Fisher-KPP equation and different assumptions are made on the non-linear diffusion term D(u). Both functions D a...
Autors principals: | Sánchez-Garduño, F, Maini, P |
---|---|
Format: | Journal article |
Publicat: |
1994
|
Ítems similars
-
TRAVELING-WAVE PHENOMENA IN SOME DEGENERATE REACTION-DIFFUSION EQUATIONS
per: Sanchezgarduno, F, et al.
Publicat: (1995) -
Travelling wave phenomena in non-linear diffusion degenerate Nagumo equations
per: Sánchez-Garduño, F, et al.
Publicat: (1997) -
Travelling wave phenomena in non-linear diffusion degenerate Nagumo equations
per: SanchezGarduno, F, et al.
Publicat: (1997) -
Existence and uniqueness of a sharp travelling wave in degenerate non-linear diffusion Fisher-KPP equations
per: Sánchez-Garduño, F, et al.
Publicat: (1994) -
Wave patterns in one-dimensional nonlinear degenerate diffusion equations
per: Sánchez-Garduño, F, et al.
Publicat: (1993)