Unsupervised detection of contextualized embedding bias with application to ideology
We propose a fully unsupervised method to detect bias in contextualized embeddings. The method leverages the assortative information latently encoded by social networks and combines orthogonality regularization, structured sparsity learning, and graph neural networks to find the embedding subspace c...
Κύριοι συγγραφείς: | Hofmann, V, Pierrehumbert, J, Schütze, H |
---|---|
Μορφή: | Conference item |
Γλώσσα: | English |
Έκδοση: |
Journal of Machine Learning Research
2022
|
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Dynamic contextualized word embeddings
ανά: Hofmann, V, κ.ά.
Έκδοση: (2021) -
Leveraging Bias in Pre-trained Word Embeddings for Unsupervised Microaggression Detection
ανά: Tolúlọpẹ́ Ògúnrẹ̀mí, κ.ά.
Έκδοση: (2022-12-01) -
Unsupervised Bitext Mining and Translation via Self-Trained Contextual Embeddings
ανά: Phillip Keung, κ.ά.
Έκδοση: (2021-03-01) -
Forecasting COVID-19 caseloads using unsupervised embedding clusters of social media posts
ανά: Drinkall, F, κ.ά.
Έκδοση: (2022) -
Modeling ideological salience and framing in polarized online groups with graph neural networks and structured sparsity
ανά: Hofmann, V, κ.ά.
Έκδοση: (2022)