Unsupervised detection of contextualized embedding bias with application to ideology

We propose a fully unsupervised method to detect bias in contextualized embeddings. The method leverages the assortative information latently encoded by social networks and combines orthogonality regularization, structured sparsity learning, and graph neural networks to find the embedding subspace c...

Descripción completa

Detalles Bibliográficos
Autores principales: Hofmann, V, Pierrehumbert, J, Schütze, H
Formato: Conference item
Lenguaje:English
Publicado: Journal of Machine Learning Research 2022

Ejemplares similares