Unsupervised detection of contextualized embedding bias with application to ideology
We propose a fully unsupervised method to detect bias in contextualized embeddings. The method leverages the assortative information latently encoded by social networks and combines orthogonality regularization, structured sparsity learning, and graph neural networks to find the embedding subspace c...
Autori principali: | Hofmann, V, Pierrehumbert, J, Schütze, H |
---|---|
Natura: | Conference item |
Lingua: | English |
Pubblicazione: |
Journal of Machine Learning Research
2022
|
Documenti analoghi
Documenti analoghi
-
Dynamic contextualized word embeddings
di: Hofmann, V, et al.
Pubblicazione: (2021) -
Leveraging Bias in Pre-trained Word Embeddings for Unsupervised Microaggression Detection
di: Tolúlọpẹ́ Ògúnrẹ̀mí, et al.
Pubblicazione: (2022-12-01) -
Unsupervised Bitext Mining and Translation via Self-Trained Contextual Embeddings
di: Phillip Keung, et al.
Pubblicazione: (2021-03-01) -
Forecasting COVID-19 caseloads using unsupervised embedding clusters of social media posts
di: Drinkall, F, et al.
Pubblicazione: (2022) -
Modeling ideological salience and framing in polarized online groups with graph neural networks and structured sparsity
di: Hofmann, V, et al.
Pubblicazione: (2022)