Unsupervised detection of contextualized embedding bias with application to ideology
We propose a fully unsupervised method to detect bias in contextualized embeddings. The method leverages the assortative information latently encoded by social networks and combines orthogonality regularization, structured sparsity learning, and graph neural networks to find the embedding subspace c...
Үндсэн зохиолчид: | Hofmann, V, Pierrehumbert, J, Schütze, H |
---|---|
Формат: | Conference item |
Хэл сонгох: | English |
Хэвлэсэн: |
Journal of Machine Learning Research
2022
|
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
Dynamic contextualized word embeddings
-н: Hofmann, V, зэрэг
Хэвлэсэн: (2021) -
Leveraging Bias in Pre-trained Word Embeddings for Unsupervised Microaggression Detection
-н: Tolúlọpẹ́ Ògúnrẹ̀mí, зэрэг
Хэвлэсэн: (2022-12-01) -
Unsupervised Bitext Mining and Translation via Self-Trained Contextual Embeddings
-н: Phillip Keung, зэрэг
Хэвлэсэн: (2021-03-01) -
Forecasting COVID-19 caseloads using unsupervised embedding clusters of social media posts
-н: Drinkall, F, зэрэг
Хэвлэсэн: (2022) -
Modeling ideological salience and framing in polarized online groups with graph neural networks and structured sparsity
-н: Hofmann, V, зэрэг
Хэвлэсэн: (2022)