Unsupervised detection of contextualized embedding bias with application to ideology
We propose a fully unsupervised method to detect bias in contextualized embeddings. The method leverages the assortative information latently encoded by social networks and combines orthogonality regularization, structured sparsity learning, and graph neural networks to find the embedding subspace c...
Hoofdauteurs: | Hofmann, V, Pierrehumbert, J, Schütze, H |
---|---|
Formaat: | Conference item |
Taal: | English |
Gepubliceerd in: |
Journal of Machine Learning Research
2022
|
Gelijkaardige items
-
Dynamic contextualized word embeddings
door: Hofmann, V, et al.
Gepubliceerd in: (2021) -
Leveraging Bias in Pre-trained Word Embeddings for Unsupervised Microaggression Detection
door: Tolúlọpẹ́ Ògúnrẹ̀mí, et al.
Gepubliceerd in: (2022-12-01) -
Unsupervised Bitext Mining and Translation via Self-Trained Contextual Embeddings
door: Phillip Keung, et al.
Gepubliceerd in: (2021-03-01) -
Forecasting COVID-19 caseloads using unsupervised embedding clusters of social media posts
door: Drinkall, F, et al.
Gepubliceerd in: (2022) -
Modeling ideological salience and framing in polarized online groups with graph neural networks and structured sparsity
door: Hofmann, V, et al.
Gepubliceerd in: (2022)