Unsupervised detection of contextualized embedding bias with application to ideology
We propose a fully unsupervised method to detect bias in contextualized embeddings. The method leverages the assortative information latently encoded by social networks and combines orthogonality regularization, structured sparsity learning, and graph neural networks to find the embedding subspace c...
Những tác giả chính: | Hofmann, V, Pierrehumbert, J, Schütze, H |
---|---|
Định dạng: | Conference item |
Ngôn ngữ: | English |
Được phát hành: |
Journal of Machine Learning Research
2022
|
Những quyển sách tương tự
-
Dynamic contextualized word embeddings
Bằng: Hofmann, V, et al.
Được phát hành: (2021) -
Leveraging Bias in Pre-trained Word Embeddings for Unsupervised Microaggression Detection
Bằng: Tolúlọpẹ́ Ògúnrẹ̀mí, et al.
Được phát hành: (2022-12-01) -
Unsupervised Bitext Mining and Translation via Self-Trained Contextual Embeddings
Bằng: Phillip Keung, et al.
Được phát hành: (2021-03-01) -
Forecasting COVID-19 caseloads using unsupervised embedding clusters of social media posts
Bằng: Drinkall, F, et al.
Được phát hành: (2022) -
Modeling ideological salience and framing in polarized online groups with graph neural networks and structured sparsity
Bằng: Hofmann, V, et al.
Được phát hành: (2022)