A Krylov-Schur approach to the truncated SVD
Computing a small number of singular values is required in many practical applications and it is therefore desirable to have efficient and robust methods that can generate such truncated singular value decompositions. A new method based on the Lanczos bidiagonalization and the Krylov-Schur method is...
第一著者: | Stoll, M |
---|---|
フォーマット: | Report |
出版事項: |
Unspecified
2008
|
類似資料
-
A Hamiltonian Krylov-Schur-type method based on the
symplectic Lanczos process
著者:: Benner, P, 等
出版事項: (2009) -
A Hamiltonian Krylov-Schur-type method based on the symplectic Lanczos process
著者:: Benner, P, 等
出版事項: (2009) -
Complex Eigenvalue Analysis of Multibody Problems via Sparsity-Preserving Krylov–Schur Iterations
著者:: Dario Mangoni, 等
出版事項: (2023-02-01) -
SVD-Krylov based techniques for structure-preserving reduced order modelling of second-order systems
著者:: Md. Motlubar Rahman, 等
出版事項: (2021-06-01) -
Correction: SVD-Krylov based techniques for structure-preserving reduced order modelling of second-order systems
著者:: Md. Motlubar Rahman, 等
出版事項: (2021-08-01)