A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape in >170,000 individuals of the GIANT Consortium

Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates a...

Full description

Bibliographic Details
Main Authors: Ried, J, Jeff, J, Mahajan, A, Goel, A, Farrall, M, Ferreira, T, Jalilzadeh-Afshari, S, Kyriakou, T, Lindgren, C, Morris, A, Watkins, H, Rayner, N, McCarthy, M, Et al.
Format: Journal article
Published: Nature Publishing Group 2016
_version_ 1826307344038887424
author Ried, J
Jeff, J
Mahajan, A
Goel, A
Mahajan, A
Farrall, M
Ferreira, T
Jalilzadeh-Afshari, S
Kyriakou, T
Lindgren, C
Morris, A
Watkins, H
Rayner, N
McCarthy, M
Et al.
author_facet Ried, J
Jeff, J
Mahajan, A
Goel, A
Mahajan, A
Farrall, M
Ferreira, T
Jalilzadeh-Afshari, S
Kyriakou, T
Lindgren, C
Morris, A
Watkins, H
Rayner, N
McCarthy, M
Et al.
author_sort Ried, J
collection OXFORD
description Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analyzed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways.
first_indexed 2024-03-07T07:00:52Z
format Journal article
id oxford-uuid:ffb534c7-63bd-4eb7-a95f-086127a17ab1
institution University of Oxford
last_indexed 2024-03-07T07:00:52Z
publishDate 2016
publisher Nature Publishing Group
record_format dspace
spelling oxford-uuid:ffb534c7-63bd-4eb7-a95f-086127a17ab12022-03-27T13:47:05ZA principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape in >170,000 individuals of the GIANT ConsortiumJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:ffb534c7-63bd-4eb7-a95f-086127a17ab1Symplectic Elements at OxfordNature Publishing Group2016Ried, JJeff, JMahajan, AGoel, AMahajan, AFarrall, MFerreira, TJalilzadeh-Afshari, SKyriakou, TLindgren, CMorris, AWatkins, HRayner, NMcCarthy, MEt al.Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analyzed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways.
spellingShingle Ried, J
Jeff, J
Mahajan, A
Goel, A
Mahajan, A
Farrall, M
Ferreira, T
Jalilzadeh-Afshari, S
Kyriakou, T
Lindgren, C
Morris, A
Watkins, H
Rayner, N
McCarthy, M
Et al.
A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape in >170,000 individuals of the GIANT Consortium
title A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape in >170,000 individuals of the GIANT Consortium
title_full A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape in >170,000 individuals of the GIANT Consortium
title_fullStr A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape in >170,000 individuals of the GIANT Consortium
title_full_unstemmed A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape in >170,000 individuals of the GIANT Consortium
title_short A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape in >170,000 individuals of the GIANT Consortium
title_sort principal component meta analysis on multiple anthropometric traits identifies novel loci for body shape in gt 170 000 individuals of the giant consortium
work_keys_str_mv AT riedj aprincipalcomponentmetaanalysisonmultipleanthropometrictraitsidentifiesnovellociforbodyshapeingt170000individualsofthegiantconsortium
AT jeffj aprincipalcomponentmetaanalysisonmultipleanthropometrictraitsidentifiesnovellociforbodyshapeingt170000individualsofthegiantconsortium
AT mahajana aprincipalcomponentmetaanalysisonmultipleanthropometrictraitsidentifiesnovellociforbodyshapeingt170000individualsofthegiantconsortium
AT goela aprincipalcomponentmetaanalysisonmultipleanthropometrictraitsidentifiesnovellociforbodyshapeingt170000individualsofthegiantconsortium
AT mahajana aprincipalcomponentmetaanalysisonmultipleanthropometrictraitsidentifiesnovellociforbodyshapeingt170000individualsofthegiantconsortium
AT farrallm aprincipalcomponentmetaanalysisonmultipleanthropometrictraitsidentifiesnovellociforbodyshapeingt170000individualsofthegiantconsortium
AT ferreirat aprincipalcomponentmetaanalysisonmultipleanthropometrictraitsidentifiesnovellociforbodyshapeingt170000individualsofthegiantconsortium
AT jalilzadehafsharis aprincipalcomponentmetaanalysisonmultipleanthropometrictraitsidentifiesnovellociforbodyshapeingt170000individualsofthegiantconsortium
AT kyriakout aprincipalcomponentmetaanalysisonmultipleanthropometrictraitsidentifiesnovellociforbodyshapeingt170000individualsofthegiantconsortium
AT lindgrenc aprincipalcomponentmetaanalysisonmultipleanthropometrictraitsidentifiesnovellociforbodyshapeingt170000individualsofthegiantconsortium
AT morrisa aprincipalcomponentmetaanalysisonmultipleanthropometrictraitsidentifiesnovellociforbodyshapeingt170000individualsofthegiantconsortium
AT watkinsh aprincipalcomponentmetaanalysisonmultipleanthropometrictraitsidentifiesnovellociforbodyshapeingt170000individualsofthegiantconsortium
AT raynern aprincipalcomponentmetaanalysisonmultipleanthropometrictraitsidentifiesnovellociforbodyshapeingt170000individualsofthegiantconsortium
AT mccarthym aprincipalcomponentmetaanalysisonmultipleanthropometrictraitsidentifiesnovellociforbodyshapeingt170000individualsofthegiantconsortium
AT etal aprincipalcomponentmetaanalysisonmultipleanthropometrictraitsidentifiesnovellociforbodyshapeingt170000individualsofthegiantconsortium
AT riedj principalcomponentmetaanalysisonmultipleanthropometrictraitsidentifiesnovellociforbodyshapeingt170000individualsofthegiantconsortium
AT jeffj principalcomponentmetaanalysisonmultipleanthropometrictraitsidentifiesnovellociforbodyshapeingt170000individualsofthegiantconsortium
AT mahajana principalcomponentmetaanalysisonmultipleanthropometrictraitsidentifiesnovellociforbodyshapeingt170000individualsofthegiantconsortium
AT goela principalcomponentmetaanalysisonmultipleanthropometrictraitsidentifiesnovellociforbodyshapeingt170000individualsofthegiantconsortium
AT mahajana principalcomponentmetaanalysisonmultipleanthropometrictraitsidentifiesnovellociforbodyshapeingt170000individualsofthegiantconsortium
AT farrallm principalcomponentmetaanalysisonmultipleanthropometrictraitsidentifiesnovellociforbodyshapeingt170000individualsofthegiantconsortium
AT ferreirat principalcomponentmetaanalysisonmultipleanthropometrictraitsidentifiesnovellociforbodyshapeingt170000individualsofthegiantconsortium
AT jalilzadehafsharis principalcomponentmetaanalysisonmultipleanthropometrictraitsidentifiesnovellociforbodyshapeingt170000individualsofthegiantconsortium
AT kyriakout principalcomponentmetaanalysisonmultipleanthropometrictraitsidentifiesnovellociforbodyshapeingt170000individualsofthegiantconsortium
AT lindgrenc principalcomponentmetaanalysisonmultipleanthropometrictraitsidentifiesnovellociforbodyshapeingt170000individualsofthegiantconsortium
AT morrisa principalcomponentmetaanalysisonmultipleanthropometrictraitsidentifiesnovellociforbodyshapeingt170000individualsofthegiantconsortium
AT watkinsh principalcomponentmetaanalysisonmultipleanthropometrictraitsidentifiesnovellociforbodyshapeingt170000individualsofthegiantconsortium
AT raynern principalcomponentmetaanalysisonmultipleanthropometrictraitsidentifiesnovellociforbodyshapeingt170000individualsofthegiantconsortium
AT mccarthym principalcomponentmetaanalysisonmultipleanthropometrictraitsidentifiesnovellociforbodyshapeingt170000individualsofthegiantconsortium
AT etal principalcomponentmetaanalysisonmultipleanthropometrictraitsidentifiesnovellociforbodyshapeingt170000individualsofthegiantconsortium