Time-temperature profiles effect on thermoluminescence glow curve formation of germanium doped optical fibres
The development of optical fibres technology grows in response to seeking a radiation detector with better thermoluminescence (TL) performance. Concerning the dosimetric characterization study by previous researchers, this research work has widened the exploration to optimize the time-temperature pr...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Penerbit Universiti Kebangsaan Malaysia
2022
|
Online Access: | http://journalarticle.ukm.my/19487/1/23.pdf |
_version_ | 1796933075708411904 |
---|---|
author | Muhammad Safwan Ahmad Fadzil, Noramaliza Mohd Noor, Nizam Tamchek, Ung, Ngie Min |
author_facet | Muhammad Safwan Ahmad Fadzil, Noramaliza Mohd Noor, Nizam Tamchek, Ung, Ngie Min |
author_sort | Muhammad Safwan Ahmad Fadzil, |
collection | UKM |
description | The development of optical fibres technology grows in response to seeking a radiation detector with better thermoluminescence (TL) performance. Concerning the dosimetric characterization study by previous researchers, this research work has widened the exploration to optimize the time-temperature profile (TTP) in connection with the glow curve formation of the optical fibres. Two forms of germanium (Ge) doped optical fibres, namely cylindrical optical fibre (CF) and flat optical fibre (FF) were fabricated, and the TTP were investigated prior to commissioning the optical fibres for fieldwork. CF and FF were irradiated to the dose of 2 Gy using a 6 MV linear accelerator. Various TTP profiles, including preheat temperature, preheat time, acquisition temperature rate, and acquisition time were varied to determine the best thermal profile for the CF and FF based on the glow curve formations. Out of 4 parameters, an increase in preheat temperatures ranging from 40 to 120 °C caused a significant variation in the glow curve formation, thus possibly giving rise to different TL signals of the optical fibres. The maximum glow peak temperature of CF and FF was unvarying when different preheat temperatures employed. These findings support the conceptual idea that manipulating the optical fibres’ readout system can alter the glow curve formation. Thus, an optimized TTP will provide the correct glow curve configuration for kinetic parameter analysis. |
first_indexed | 2024-03-06T04:41:37Z |
format | Article |
id | ukm.eprints-19487 |
institution | Universiti Kebangsaan Malaysia |
language | English |
last_indexed | 2024-03-06T04:41:37Z |
publishDate | 2022 |
publisher | Penerbit Universiti Kebangsaan Malaysia |
record_format | dspace |
spelling | ukm.eprints-194872022-08-26T02:32:11Z http://journalarticle.ukm.my/19487/ Time-temperature profiles effect on thermoluminescence glow curve formation of germanium doped optical fibres Muhammad Safwan Ahmad Fadzil, Noramaliza Mohd Noor, Nizam Tamchek, Ung, Ngie Min The development of optical fibres technology grows in response to seeking a radiation detector with better thermoluminescence (TL) performance. Concerning the dosimetric characterization study by previous researchers, this research work has widened the exploration to optimize the time-temperature profile (TTP) in connection with the glow curve formation of the optical fibres. Two forms of germanium (Ge) doped optical fibres, namely cylindrical optical fibre (CF) and flat optical fibre (FF) were fabricated, and the TTP were investigated prior to commissioning the optical fibres for fieldwork. CF and FF were irradiated to the dose of 2 Gy using a 6 MV linear accelerator. Various TTP profiles, including preheat temperature, preheat time, acquisition temperature rate, and acquisition time were varied to determine the best thermal profile for the CF and FF based on the glow curve formations. Out of 4 parameters, an increase in preheat temperatures ranging from 40 to 120 °C caused a significant variation in the glow curve formation, thus possibly giving rise to different TL signals of the optical fibres. The maximum glow peak temperature of CF and FF was unvarying when different preheat temperatures employed. These findings support the conceptual idea that manipulating the optical fibres’ readout system can alter the glow curve formation. Thus, an optimized TTP will provide the correct glow curve configuration for kinetic parameter analysis. Penerbit Universiti Kebangsaan Malaysia 2022-05 Article PeerReviewed application/pdf en http://journalarticle.ukm.my/19487/1/23.pdf Muhammad Safwan Ahmad Fadzil, and Noramaliza Mohd Noor, and Nizam Tamchek, and Ung, Ngie Min (2022) Time-temperature profiles effect on thermoluminescence glow curve formation of germanium doped optical fibres. Sains Malaysiana, 51 (5). pp. 1557-1566. ISSN 0126-6039 https://www.ukm.my/jsm/malay_journals/jilid51bil5_2022/KandunganJilid51Bil5_2022.html |
spellingShingle | Muhammad Safwan Ahmad Fadzil, Noramaliza Mohd Noor, Nizam Tamchek, Ung, Ngie Min Time-temperature profiles effect on thermoluminescence glow curve formation of germanium doped optical fibres |
title | Time-temperature profiles effect on thermoluminescence glow curve formation of germanium doped optical fibres |
title_full | Time-temperature profiles effect on thermoluminescence glow curve formation of germanium doped optical fibres |
title_fullStr | Time-temperature profiles effect on thermoluminescence glow curve formation of germanium doped optical fibres |
title_full_unstemmed | Time-temperature profiles effect on thermoluminescence glow curve formation of germanium doped optical fibres |
title_short | Time-temperature profiles effect on thermoluminescence glow curve formation of germanium doped optical fibres |
title_sort | time temperature profiles effect on thermoluminescence glow curve formation of germanium doped optical fibres |
url | http://journalarticle.ukm.my/19487/1/23.pdf |
work_keys_str_mv | AT muhammadsafwanahmadfadzil timetemperatureprofileseffectonthermoluminescenceglowcurveformationofgermaniumdopedopticalfibres AT noramalizamohdnoor timetemperatureprofileseffectonthermoluminescenceglowcurveformationofgermaniumdopedopticalfibres AT nizamtamchek timetemperatureprofileseffectonthermoluminescenceglowcurveformationofgermaniumdopedopticalfibres AT ungngiemin timetemperatureprofileseffectonthermoluminescenceglowcurveformationofgermaniumdopedopticalfibres |