Summary: | Natural fibres in composite materials, such as kenaf fibres, are used to reinforce polypropylene (PP) due to their light weight
and high mechanical performance required in various applications, such as automotive. Although natural fibres seem to
be the most promising material, manufacturing parameters and material composition are crucial to determining balanced
output performance. Therefore, this study provides essential knowledge on defining the parameters and the effect of addition
of graphene content to kenaf fibres composites using computer simulation via Abaqus CAE software. Detailed analyses
were compared with the experimental data of Young’s modulus and tensile strength. General static and dynamic explicit
analyses were conducted using Abaqus CAE simulations, and set at 40 wt. % kenaf fibres, 0, 1, 3, and 5 wt. % graphene.
Short kenaf fibres were utilised together with graphene nanoplatelets and prepared using a hot-pressing technique with the
temperature set at 190 °C and pressure of 5 MPa for 5 min. The findings indicated that the simulation and experimental data
from previous studies data congruent which is Young’s modulus and tensile strength increased with addition of graphene content.
Thus, the simulated data could predict the experimental mechanical performance, in which 24 MPa of tensile strength was
recorded for 3 wt. % of graphene additions.
|