Global convergence analysis of a new nonlinear conjugate gradient coefficient with strong wolfe line search

Nonlinear conjugate gradient (CG) methods are the most important method for solving largescale unconstrained optimisation problems. Many studies and modifications have been conducted recently to improve this method. In this paper, a new class of conjugate gradient coefficients β k with a new para...

Full description

Bibliographic Details
Main Authors: Abdelrahman Abdalla, A., Mamat, M., Rivaie, M., Omer, O.
Format: Article
Language:English
Published: Penerbit Universiti Kebangsaan Malaysia 2014
Online Access:http://journalarticle.ukm.my/8296/1/jqma-10-1-paper7.pdf
_version_ 1825726228155334656
author Abdelrahman Abdalla, A.
Mamat, M.
Rivaie, M.
Omer, O.
author_facet Abdelrahman Abdalla, A.
Mamat, M.
Rivaie, M.
Omer, O.
author_sort Abdelrahman Abdalla, A.
collection UKM
description Nonlinear conjugate gradient (CG) methods are the most important method for solving largescale unconstrained optimisation problems. Many studies and modifications have been conducted recently to improve this method. In this paper, a new class of conjugate gradient coefficients β k with a new parameter m = gk gk−1 that possesses global convergence properties is presented. The global convergence and sufficient descent property is established using inexact line searches to determine that α k is the step size of CG methods. Numerical result shows that the new formula is superior and more efficient when compared to other CG coefficients.
first_indexed 2024-03-06T04:07:42Z
format Article
id ukm.eprints-8296
institution Universiti Kebangsaan Malaysia
language English
last_indexed 2024-03-06T04:07:42Z
publishDate 2014
publisher Penerbit Universiti Kebangsaan Malaysia
record_format dspace
spelling ukm.eprints-82962016-12-14T06:46:49Z http://journalarticle.ukm.my/8296/ Global convergence analysis of a new nonlinear conjugate gradient coefficient with strong wolfe line search Abdelrahman Abdalla, A. Mamat, M. Rivaie, M. Omer, O. Nonlinear conjugate gradient (CG) methods are the most important method for solving largescale unconstrained optimisation problems. Many studies and modifications have been conducted recently to improve this method. In this paper, a new class of conjugate gradient coefficients β k with a new parameter m = gk gk−1 that possesses global convergence properties is presented. The global convergence and sufficient descent property is established using inexact line searches to determine that α k is the step size of CG methods. Numerical result shows that the new formula is superior and more efficient when compared to other CG coefficients. Penerbit Universiti Kebangsaan Malaysia 2014-07 Article PeerReviewed application/pdf en http://journalarticle.ukm.my/8296/1/jqma-10-1-paper7.pdf Abdelrahman Abdalla, A. and Mamat, M. and Rivaie, M. and Omer, O. (2014) Global convergence analysis of a new nonlinear conjugate gradient coefficient with strong wolfe line search. Journal of Quality Measurement and Analysis, 10 (1). pp. 75-85. ISSN 1823-5670 http://www.ukm.my/jqma/index.html
spellingShingle Abdelrahman Abdalla, A.
Mamat, M.
Rivaie, M.
Omer, O.
Global convergence analysis of a new nonlinear conjugate gradient coefficient with strong wolfe line search
title Global convergence analysis of a new nonlinear conjugate gradient coefficient with strong wolfe line search
title_full Global convergence analysis of a new nonlinear conjugate gradient coefficient with strong wolfe line search
title_fullStr Global convergence analysis of a new nonlinear conjugate gradient coefficient with strong wolfe line search
title_full_unstemmed Global convergence analysis of a new nonlinear conjugate gradient coefficient with strong wolfe line search
title_short Global convergence analysis of a new nonlinear conjugate gradient coefficient with strong wolfe line search
title_sort global convergence analysis of a new nonlinear conjugate gradient coefficient with strong wolfe line search
url http://journalarticle.ukm.my/8296/1/jqma-10-1-paper7.pdf
work_keys_str_mv AT abdelrahmanabdallaa globalconvergenceanalysisofanewnonlinearconjugategradientcoefficientwithstrongwolfelinesearch
AT mamatm globalconvergenceanalysisofanewnonlinearconjugategradientcoefficientwithstrongwolfelinesearch
AT rivaiem globalconvergenceanalysisofanewnonlinearconjugategradientcoefficientwithstrongwolfelinesearch
AT omero globalconvergenceanalysisofanewnonlinearconjugategradientcoefficientwithstrongwolfelinesearch