Probabilistic derivation of a bilinear summation formula for the Meixner-Pollaczek polynominals

Using the technique of canonical expansion in probability theory, a bilinear summation formula is derived for the special case of the Meixner-Pollaczek polynomials {λn(k)(x)} which are defined by the generating function ∑n=0∞λn(k)(x)zn/n!=(1+z)12(x−k)/(1−z)12(x+k),   |z|<1. These polynomials...

Full description

Bibliographic Details
Main Author: Lee, P.A.
Format: Article
Language:English
Published: Hindawi Publishing Corporation 1980
Subjects:
Online Access:http://eprints.um.edu.my/17452/1/LeePA_%281980%29.pdf
Description
Summary:Using the technique of canonical expansion in probability theory, a bilinear summation formula is derived for the special case of the Meixner-Pollaczek polynomials {λn(k)(x)} which are defined by the generating function ∑n=0∞λn(k)(x)zn/n!=(1+z)12(x−k)/(1−z)12(x+k),   |z|<1. These polynomials satisfy the orthogonality condition ∫−∞∞pk(x)λm(k)(ix)λn(k)(ix)dx=(−1)nn!(k)nδm,n,   i=−1 with respect to the weight function p1(x)=sech πx pk(x)=∫−∞∞…∫−∞∞sech πx1sech πx2 … sech π(x−x1−…−xk−1)dx1dx2…dxk−1,   k=2,3,…