Probabilistic derivation of a bilinear summation formula for the Meixner-Pollaczek polynominals

Using the technique of canonical expansion in probability theory, a bilinear summation formula is derived for the special case of the Meixner-Pollaczek polynomials {λn(k)(x)} which are defined by the generating function ∑n=0∞λn(k)(x)zn/n!=(1+z)12(x−k)/(1−z)12(x+k),   |z|<1. These polynomials...

Full description

Bibliographic Details
Main Author: Lee, P.A.
Format: Article
Language:English
Published: Hindawi Publishing Corporation 1980
Subjects:
Online Access:http://eprints.um.edu.my/17452/1/LeePA_%281980%29.pdf
_version_ 1796947150314143744
author Lee, P.A.
author_facet Lee, P.A.
author_sort Lee, P.A.
collection UM
description Using the technique of canonical expansion in probability theory, a bilinear summation formula is derived for the special case of the Meixner-Pollaczek polynomials {λn(k)(x)} which are defined by the generating function ∑n=0∞λn(k)(x)zn/n!=(1+z)12(x−k)/(1−z)12(x+k),   |z|<1. These polynomials satisfy the orthogonality condition ∫−∞∞pk(x)λm(k)(ix)λn(k)(ix)dx=(−1)nn!(k)nδm,n,   i=−1 with respect to the weight function p1(x)=sech πx pk(x)=∫−∞∞…∫−∞∞sech πx1sech πx2 … sech π(x−x1−…−xk−1)dx1dx2…dxk−1,   k=2,3,…
first_indexed 2024-03-06T05:42:33Z
format Article
id um.eprints-17452
institution Universiti Malaya
language English
last_indexed 2024-03-06T05:42:33Z
publishDate 1980
publisher Hindawi Publishing Corporation
record_format dspace
spelling um.eprints-174522017-07-07T02:29:47Z http://eprints.um.edu.my/17452/ Probabilistic derivation of a bilinear summation formula for the Meixner-Pollaczek polynominals Lee, P.A. QA Mathematics Using the technique of canonical expansion in probability theory, a bilinear summation formula is derived for the special case of the Meixner-Pollaczek polynomials {λn(k)(x)} which are defined by the generating function ∑n=0∞λn(k)(x)zn/n!=(1+z)12(x−k)/(1−z)12(x+k),   |z|<1. These polynomials satisfy the orthogonality condition ∫−∞∞pk(x)λm(k)(ix)λn(k)(ix)dx=(−1)nn!(k)nδm,n,   i=−1 with respect to the weight function p1(x)=sech πx pk(x)=∫−∞∞…∫−∞∞sech πx1sech πx2 … sech π(x−x1−…−xk−1)dx1dx2…dxk−1,   k=2,3,… Hindawi Publishing Corporation 1980 Article PeerReviewed application/pdf en http://eprints.um.edu.my/17452/1/LeePA_%281980%29.pdf Lee, P.A. (1980) Probabilistic derivation of a bilinear summation formula for the Meixner-Pollaczek polynominals. International Journal of Mathematics and Mathematical Sciences, 3 (4). pp. 761-771. ISSN 0161-1712, DOI https://doi.org/10.1155/S0161171280000555 <https://doi.org/10.1155/S0161171280000555>. http://dx.doi.org/10.1155/S0161171280000555 doi:10.1155/S0161171280000555
spellingShingle QA Mathematics
Lee, P.A.
Probabilistic derivation of a bilinear summation formula for the Meixner-Pollaczek polynominals
title Probabilistic derivation of a bilinear summation formula for the Meixner-Pollaczek polynominals
title_full Probabilistic derivation of a bilinear summation formula for the Meixner-Pollaczek polynominals
title_fullStr Probabilistic derivation of a bilinear summation formula for the Meixner-Pollaczek polynominals
title_full_unstemmed Probabilistic derivation of a bilinear summation formula for the Meixner-Pollaczek polynominals
title_short Probabilistic derivation of a bilinear summation formula for the Meixner-Pollaczek polynominals
title_sort probabilistic derivation of a bilinear summation formula for the meixner pollaczek polynominals
topic QA Mathematics
url http://eprints.um.edu.my/17452/1/LeePA_%281980%29.pdf
work_keys_str_mv AT leepa probabilisticderivationofabilinearsummationformulaforthemeixnerpollaczekpolynominals