Some properties for integro-differential operator defined by a fractional formal
Recently, the study of the fractional formal (operators, polynomials and classes of special functions) has been increased. This study not only in mathematics but extended to another topics. In this effort, we investigate a generalized integro-differential operator Jm(z) defined by a fractional forma...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2016
|
Subjects: | |
Online Access: | http://eprints.um.edu.my/18003/1/Abdulnaby%2C_Z.E._%282016%29.pdf |
_version_ | 1825721032157167616 |
---|---|
author | Abdulnaby, Z.E. Ibrahim, R.W. Kılıçman, A. |
author_facet | Abdulnaby, Z.E. Ibrahim, R.W. Kılıçman, A. |
author_sort | Abdulnaby, Z.E. |
collection | UM |
description | Recently, the study of the fractional formal (operators, polynomials and classes of special functions) has been increased. This study not only in mathematics but extended to another topics. In this effort, we investigate a generalized integro-differential operator Jm(z) defined by a fractional formal (fractional differential operator) and study some its geometric properties by employing it in new subclasses of analytic univalent functions. |
first_indexed | 2024-03-06T05:44:09Z |
format | Article |
id | um.eprints-18003 |
institution | Universiti Malaya |
language | English |
last_indexed | 2024-03-06T05:44:09Z |
publishDate | 2016 |
publisher | SpringerOpen |
record_format | dspace |
spelling | um.eprints-180032017-10-12T08:11:03Z http://eprints.um.edu.my/18003/ Some properties for integro-differential operator defined by a fractional formal Abdulnaby, Z.E. Ibrahim, R.W. Kılıçman, A. QA Mathematics QA75 Electronic computers. Computer science Recently, the study of the fractional formal (operators, polynomials and classes of special functions) has been increased. This study not only in mathematics but extended to another topics. In this effort, we investigate a generalized integro-differential operator Jm(z) defined by a fractional formal (fractional differential operator) and study some its geometric properties by employing it in new subclasses of analytic univalent functions. SpringerOpen 2016 Article PeerReviewed application/pdf en http://eprints.um.edu.my/18003/1/Abdulnaby%2C_Z.E._%282016%29.pdf Abdulnaby, Z.E. and Ibrahim, R.W. and Kılıçman, A. (2016) Some properties for integro-differential operator defined by a fractional formal. SpringerPlus, 5 (1). p. 893. ISSN 2193-1801, DOI https://doi.org/10.1186/s40064-016-2563-0 <https://doi.org/10.1186/s40064-016-2563-0>. http://dx.doi.org/10.1186/s40064-016-2563-0 doi:10.1186/s40064-016-2563-0 |
spellingShingle | QA Mathematics QA75 Electronic computers. Computer science Abdulnaby, Z.E. Ibrahim, R.W. Kılıçman, A. Some properties for integro-differential operator defined by a fractional formal |
title | Some properties for integro-differential operator defined by a fractional formal |
title_full | Some properties for integro-differential operator defined by a fractional formal |
title_fullStr | Some properties for integro-differential operator defined by a fractional formal |
title_full_unstemmed | Some properties for integro-differential operator defined by a fractional formal |
title_short | Some properties for integro-differential operator defined by a fractional formal |
title_sort | some properties for integro differential operator defined by a fractional formal |
topic | QA Mathematics QA75 Electronic computers. Computer science |
url | http://eprints.um.edu.my/18003/1/Abdulnaby%2C_Z.E._%282016%29.pdf |
work_keys_str_mv | AT abdulnabyze somepropertiesforintegrodifferentialoperatordefinedbyafractionalformal AT ibrahimrw somepropertiesforintegrodifferentialoperatordefinedbyafractionalformal AT kılıcmana somepropertiesforintegrodifferentialoperatordefinedbyafractionalformal |