Femtoseconds soliton mode-locked erbium-doped fiber laser based on nickel oxide nanoparticle saturable absorber
We demonstrate a femtosecond mode-locked erbium-doped fiber laser (EDFL) using a nickel oxide (NiO) as a saturable absorber (SA). NiO nanoparticles are hosted into polyethylene oxide film and attached to fiber ferrule in the laser cavity. The NiO-SA shows a 39% modulation depth with a 0.04 MW/cm2 sa...
Main Authors: | , , , , |
---|---|
Format: | Article |
Published: |
Optical Society of America
2017
|
Subjects: |
Summary: | We demonstrate a femtosecond mode-locked erbium-doped fiber laser (EDFL) using a nickel oxide (NiO) as a saturable absorber (SA). NiO nanoparticles are hosted into polyethylene oxide film and attached to fiber ferrule in the laser cavity. The NiO-SA shows a 39% modulation depth with a 0.04 MW/cm2 saturation intensity. Our ring laser cavity based on erbium-doped active fiber with managed intracavity dispersion has the ability to generate ultrashort pulses with a full width at half-maximum (FWHM) of around 2.85 nm centered at 1561.8 nm. The pulses repeat at a frequency of 0.96 MHz and duration of 950 fs. |
---|