Growth and photosynthesis of Chlorella strains from polar, temperate and tropical freshwater environments under temperature stress
Elevated temperatures as a consequence of global warming have significant impacts on the adaptation and survival of microalgae which are important primary producers in many ecosystems. The impact of temperature on the photosynthesis of microalgae is of great interest as the primary production of alg...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Published: |
Science Press
2018
|
Subjects: |
_version_ | 1825721701453791232 |
---|---|
author | Lee, Kok Keong Lim, Phaik Eem Poong, Sze Wan Wong, Chiew Yen Phang, Siew Moi Beardall, John |
author_facet | Lee, Kok Keong Lim, Phaik Eem Poong, Sze Wan Wong, Chiew Yen Phang, Siew Moi Beardall, John |
author_sort | Lee, Kok Keong |
collection | UM |
description | Elevated temperatures as a consequence of global warming have significant impacts on the adaptation and survival of microalgae which are important primary producers in many ecosystems. The impact of temperature on the photosynthesis of microalgae is of great interest as the primary production of algal biomass is strongly dependent on the photosynthetic rates in a dynamic environment. Here, we examine the effects of elevated temperature on Chlorella strains originating from different latitudes, namely Antarctic, Arctic, temperate and tropical regions. Chlorophyll fluorescence was used to assess the photosynthetic responses of the microalgae. Rapid light curves (RLCs) and maximum quantum yield (F v / F m ) were recorded. The results showed that Chlorella originating from different latitudes portrayed different growth trends and photosynthetic performance. The Chlorella genus is eurythermal, with a broad temperature tolerance range, but with strain-specific characteristics. However, there was a large overlap between the tolerance range of the four strains due to their “eurythermal adaptivity”. Changes in the photosynthetic parameters indicated temperature stress. The ability of the four strains to reactivate photosynthesis after inhibition of photosynthesis under high temperatures was also studied. The Chlorella strains were shown to recover in terms of photosynthesis and growth (measured as Chl a) when they were returned to their ambient temperatures. Polar strains showed faster recovery in their optimal temperature compared to that under the ambient temperature from which they were isolated. |
first_indexed | 2024-03-06T05:54:22Z |
format | Article |
id | um.eprints-21521 |
institution | Universiti Malaya |
last_indexed | 2024-03-06T05:54:22Z |
publishDate | 2018 |
publisher | Science Press |
record_format | dspace |
spelling | um.eprints-215212019-06-20T06:45:20Z http://eprints.um.edu.my/21521/ Growth and photosynthesis of Chlorella strains from polar, temperate and tropical freshwater environments under temperature stress Lee, Kok Keong Lim, Phaik Eem Poong, Sze Wan Wong, Chiew Yen Phang, Siew Moi Beardall, John Q Science (General) QH Natural history Elevated temperatures as a consequence of global warming have significant impacts on the adaptation and survival of microalgae which are important primary producers in many ecosystems. The impact of temperature on the photosynthesis of microalgae is of great interest as the primary production of algal biomass is strongly dependent on the photosynthetic rates in a dynamic environment. Here, we examine the effects of elevated temperature on Chlorella strains originating from different latitudes, namely Antarctic, Arctic, temperate and tropical regions. Chlorophyll fluorescence was used to assess the photosynthetic responses of the microalgae. Rapid light curves (RLCs) and maximum quantum yield (F v / F m ) were recorded. The results showed that Chlorella originating from different latitudes portrayed different growth trends and photosynthetic performance. The Chlorella genus is eurythermal, with a broad temperature tolerance range, but with strain-specific characteristics. However, there was a large overlap between the tolerance range of the four strains due to their “eurythermal adaptivity”. Changes in the photosynthetic parameters indicated temperature stress. The ability of the four strains to reactivate photosynthesis after inhibition of photosynthesis under high temperatures was also studied. The Chlorella strains were shown to recover in terms of photosynthesis and growth (measured as Chl a) when they were returned to their ambient temperatures. Polar strains showed faster recovery in their optimal temperature compared to that under the ambient temperature from which they were isolated. Science Press 2018 Article PeerReviewed Lee, Kok Keong and Lim, Phaik Eem and Poong, Sze Wan and Wong, Chiew Yen and Phang, Siew Moi and Beardall, John (2018) Growth and photosynthesis of Chlorella strains from polar, temperate and tropical freshwater environments under temperature stress. Journal of Oceanology and Limnology, 36 (4). pp. 1266-1279. ISSN 2096-5508, DOI https://doi.org/10.1007/s00343-018-7093-x <https://doi.org/10.1007/s00343-018-7093-x>. https://doi.org/10.1007/s00343-018-7093-x doi:10.1007/s00343-018-7093-x |
spellingShingle | Q Science (General) QH Natural history Lee, Kok Keong Lim, Phaik Eem Poong, Sze Wan Wong, Chiew Yen Phang, Siew Moi Beardall, John Growth and photosynthesis of Chlorella strains from polar, temperate and tropical freshwater environments under temperature stress |
title | Growth and photosynthesis of Chlorella strains from polar, temperate and tropical freshwater environments under temperature stress |
title_full | Growth and photosynthesis of Chlorella strains from polar, temperate and tropical freshwater environments under temperature stress |
title_fullStr | Growth and photosynthesis of Chlorella strains from polar, temperate and tropical freshwater environments under temperature stress |
title_full_unstemmed | Growth and photosynthesis of Chlorella strains from polar, temperate and tropical freshwater environments under temperature stress |
title_short | Growth and photosynthesis of Chlorella strains from polar, temperate and tropical freshwater environments under temperature stress |
title_sort | growth and photosynthesis of chlorella strains from polar temperate and tropical freshwater environments under temperature stress |
topic | Q Science (General) QH Natural history |
work_keys_str_mv | AT leekokkeong growthandphotosynthesisofchlorellastrainsfrompolartemperateandtropicalfreshwaterenvironmentsundertemperaturestress AT limphaikeem growthandphotosynthesisofchlorellastrainsfrompolartemperateandtropicalfreshwaterenvironmentsundertemperaturestress AT poongszewan growthandphotosynthesisofchlorellastrainsfrompolartemperateandtropicalfreshwaterenvironmentsundertemperaturestress AT wongchiewyen growthandphotosynthesisofchlorellastrainsfrompolartemperateandtropicalfreshwaterenvironmentsundertemperaturestress AT phangsiewmoi growthandphotosynthesisofchlorellastrainsfrompolartemperateandtropicalfreshwaterenvironmentsundertemperaturestress AT beardalljohn growthandphotosynthesisofchlorellastrainsfrompolartemperateandtropicalfreshwaterenvironmentsundertemperaturestress |