Summary: | Radiation dosimetry applications related to radiotherapy have clear importance in determining the accurate and safe delivery of patient prescribed doses. Versatile yet robust, high spatial resolutions, wide dynamic range real-time forms of dosimetry are called for. Doped silica optical fibers of sub-mm spatial resolution exhibit useful radioluminescence (RL) properties when exposed to ionizing radiation. In this study, primary investigations have been carried out on phosphorus-doped silica optical-fiber. High-energy clinical X-ray beams (6 MV and 10 MV) were used to irradiate the optical fiber, RL response being recorded for six dose-rates (between 100 MU/min and 600 MU/min) delivered by a Varian 2100 C/D linear accelerator. The P-doped optical-fiber showed linear RL response, with minimal observable memory and afterglow and plateau effects. The results indicate the P-doped optical-fiber dosimeter to have strong potential for use in radiotherapy applications.
|