Low-Cost Integrated Zinc Oxide Nanorod-Based Humidity Sensors for Arduino Platform
Realization of a simple integrated and low-cost intensity modulation/direct detection-based humidity and vapor detection system utilizing zinc oxide (ZnO) nanorods as the active material is demonstrated. The sensing device comprises of ZnO nanorods optimally grown on a glass substrate and mounted on...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Published: |
Institute of Electrical and Electronics Engineers (IEEE)
2019
|
Subjects: |
_version_ | 1796961731006693376 |
---|---|
author | Yusof, Haziezol Helmi Mohd Harun, Sulaiman Wadi Dimyati, Kaharudin Bora, Tanujjal Sterckx, Karel Mohammed, Waleed S. Dutta, Joydeep |
author_facet | Yusof, Haziezol Helmi Mohd Harun, Sulaiman Wadi Dimyati, Kaharudin Bora, Tanujjal Sterckx, Karel Mohammed, Waleed S. Dutta, Joydeep |
author_sort | Yusof, Haziezol Helmi Mohd |
collection | UM |
description | Realization of a simple integrated and low-cost intensity modulation/direct detection-based humidity and vapor detection system utilizing zinc oxide (ZnO) nanorods as the active material is demonstrated. The sensing device comprises of ZnO nanorods optimally grown on a glass substrate and mounted on 3D printed platform for the alignment with a green light-emitting diode setup for an edge excitation. An Arduino platform was used for the signal processing of the detection of the transmitted light. Both forward and backward scattering are affected due to light leakage while propagating through the glass substrate which are further attenuated in the presence of humidity. In this paper, backward scattering was found to be dominant, and thus, with increasing humidity, a reduction in the transmitted light was monitored. When the sensor was tested in a humidity controlled environment, it was found that the output voltage drops by approximately 750 mV upon changing the relative humidity (RH) level from 35% to 90% in a non-linear fashion. The average sensitivity of the sensor was observed to be-12 mV/% throughout the tested RH levels. Sensitivity was found to be higher at-24.6 mV/% for RH's beyond 70%. An average response time of 3.8 s was obtained for RH levels of 85% with respect to the standard ambient humidity conditions (RH 50%), which showed a quicker recovery time of 2.2 s. The proposed sensor device provides numerous advantages, including low-cost production, simplicity in design, ease of use, and stability during handling. |
first_indexed | 2024-03-06T05:58:29Z |
format | Article |
id | um.eprints-22951 |
institution | Universiti Malaya |
last_indexed | 2024-03-06T05:58:29Z |
publishDate | 2019 |
publisher | Institute of Electrical and Electronics Engineers (IEEE) |
record_format | dspace |
spelling | um.eprints-229512019-11-04T07:38:11Z http://eprints.um.edu.my/22951/ Low-Cost Integrated Zinc Oxide Nanorod-Based Humidity Sensors for Arduino Platform Yusof, Haziezol Helmi Mohd Harun, Sulaiman Wadi Dimyati, Kaharudin Bora, Tanujjal Sterckx, Karel Mohammed, Waleed S. Dutta, Joydeep TK Electrical engineering. Electronics Nuclear engineering Realization of a simple integrated and low-cost intensity modulation/direct detection-based humidity and vapor detection system utilizing zinc oxide (ZnO) nanorods as the active material is demonstrated. The sensing device comprises of ZnO nanorods optimally grown on a glass substrate and mounted on 3D printed platform for the alignment with a green light-emitting diode setup for an edge excitation. An Arduino platform was used for the signal processing of the detection of the transmitted light. Both forward and backward scattering are affected due to light leakage while propagating through the glass substrate which are further attenuated in the presence of humidity. In this paper, backward scattering was found to be dominant, and thus, with increasing humidity, a reduction in the transmitted light was monitored. When the sensor was tested in a humidity controlled environment, it was found that the output voltage drops by approximately 750 mV upon changing the relative humidity (RH) level from 35% to 90% in a non-linear fashion. The average sensitivity of the sensor was observed to be-12 mV/% throughout the tested RH levels. Sensitivity was found to be higher at-24.6 mV/% for RH's beyond 70%. An average response time of 3.8 s was obtained for RH levels of 85% with respect to the standard ambient humidity conditions (RH 50%), which showed a quicker recovery time of 2.2 s. The proposed sensor device provides numerous advantages, including low-cost production, simplicity in design, ease of use, and stability during handling. Institute of Electrical and Electronics Engineers (IEEE) 2019 Article PeerReviewed Yusof, Haziezol Helmi Mohd and Harun, Sulaiman Wadi and Dimyati, Kaharudin and Bora, Tanujjal and Sterckx, Karel and Mohammed, Waleed S. and Dutta, Joydeep (2019) Low-Cost Integrated Zinc Oxide Nanorod-Based Humidity Sensors for Arduino Platform. IEEE Sensors Journal, 19 (7). pp. 2442-2449. ISSN 1530-437X, DOI https://doi.org/10.1109/JSEN.2018.2886584 <https://doi.org/10.1109/JSEN.2018.2886584>. https://doi.org/10.1109/JSEN.2018.2886584 doi:10.1109/JSEN.2018.2886584 |
spellingShingle | TK Electrical engineering. Electronics Nuclear engineering Yusof, Haziezol Helmi Mohd Harun, Sulaiman Wadi Dimyati, Kaharudin Bora, Tanujjal Sterckx, Karel Mohammed, Waleed S. Dutta, Joydeep Low-Cost Integrated Zinc Oxide Nanorod-Based Humidity Sensors for Arduino Platform |
title | Low-Cost Integrated Zinc Oxide Nanorod-Based Humidity Sensors for Arduino Platform |
title_full | Low-Cost Integrated Zinc Oxide Nanorod-Based Humidity Sensors for Arduino Platform |
title_fullStr | Low-Cost Integrated Zinc Oxide Nanorod-Based Humidity Sensors for Arduino Platform |
title_full_unstemmed | Low-Cost Integrated Zinc Oxide Nanorod-Based Humidity Sensors for Arduino Platform |
title_short | Low-Cost Integrated Zinc Oxide Nanorod-Based Humidity Sensors for Arduino Platform |
title_sort | low cost integrated zinc oxide nanorod based humidity sensors for arduino platform |
topic | TK Electrical engineering. Electronics Nuclear engineering |
work_keys_str_mv | AT yusofhaziezolhelmimohd lowcostintegratedzincoxidenanorodbasedhumiditysensorsforarduinoplatform AT harunsulaimanwadi lowcostintegratedzincoxidenanorodbasedhumiditysensorsforarduinoplatform AT dimyatikaharudin lowcostintegratedzincoxidenanorodbasedhumiditysensorsforarduinoplatform AT boratanujjal lowcostintegratedzincoxidenanorodbasedhumiditysensorsforarduinoplatform AT sterckxkarel lowcostintegratedzincoxidenanorodbasedhumiditysensorsforarduinoplatform AT mohammedwaleeds lowcostintegratedzincoxidenanorodbasedhumiditysensorsforarduinoplatform AT duttajoydeep lowcostintegratedzincoxidenanorodbasedhumiditysensorsforarduinoplatform |