Parameter estimation by minimizing a probability generating function-based power divergence

Generating function-based statistical inference is an attractive approach if the probability (density) function is complicated when compared with the generating function. Here, we propose a parameter estimation method that minimizes a probability generating function (pgf)-based power divergence with...

Full description

Bibliographic Details
Main Authors: Tay, Siew Ying, Ng, Choung Min, Ong, Seng Huat
Format: Article
Published: Taylor & Francis 2019
Subjects:
_version_ 1825722028613697536
author Tay, Siew Ying
Ng, Choung Min
Ong, Seng Huat
author_facet Tay, Siew Ying
Ng, Choung Min
Ong, Seng Huat
author_sort Tay, Siew Ying
collection UM
description Generating function-based statistical inference is an attractive approach if the probability (density) function is complicated when compared with the generating function. Here, we propose a parameter estimation method that minimizes a probability generating function (pgf)-based power divergence with a tuning parameter to mitigate the impact of data contamination. The proposed estimator is linked to the M-estimators and hence possesses the properties of consistency and asymptotic normality. In terms of parameter biases and mean squared errors from simulations, the proposed estimation method performs better for smaller value of the tuning parameter as data contamination percentage increases. © 2018, © 2018 Taylor & Francis Group, LLC.
first_indexed 2024-03-06T05:59:23Z
format Article
id um.eprints-23270
institution Universiti Malaya
last_indexed 2024-03-06T05:59:23Z
publishDate 2019
publisher Taylor & Francis
record_format dspace
spelling um.eprints-232702019-12-23T01:52:50Z http://eprints.um.edu.my/23270/ Parameter estimation by minimizing a probability generating function-based power divergence Tay, Siew Ying Ng, Choung Min Ong, Seng Huat Q Science (General) QA Mathematics Generating function-based statistical inference is an attractive approach if the probability (density) function is complicated when compared with the generating function. Here, we propose a parameter estimation method that minimizes a probability generating function (pgf)-based power divergence with a tuning parameter to mitigate the impact of data contamination. The proposed estimator is linked to the M-estimators and hence possesses the properties of consistency and asymptotic normality. In terms of parameter biases and mean squared errors from simulations, the proposed estimation method performs better for smaller value of the tuning parameter as data contamination percentage increases. © 2018, © 2018 Taylor & Francis Group, LLC. Taylor & Francis 2019 Article PeerReviewed Tay, Siew Ying and Ng, Choung Min and Ong, Seng Huat (2019) Parameter estimation by minimizing a probability generating function-based power divergence. Communications in Statistics - Simulation and Computation, 48 (10). pp. 2898-2912. ISSN 0361-0918, DOI https://doi.org/10.1080/03610918.2018.1468462 <https://doi.org/10.1080/03610918.2018.1468462>. https://doi.org/10.1080/03610918.2018.1468462 doi:10.1080/03610918.2018.1468462
spellingShingle Q Science (General)
QA Mathematics
Tay, Siew Ying
Ng, Choung Min
Ong, Seng Huat
Parameter estimation by minimizing a probability generating function-based power divergence
title Parameter estimation by minimizing a probability generating function-based power divergence
title_full Parameter estimation by minimizing a probability generating function-based power divergence
title_fullStr Parameter estimation by minimizing a probability generating function-based power divergence
title_full_unstemmed Parameter estimation by minimizing a probability generating function-based power divergence
title_short Parameter estimation by minimizing a probability generating function-based power divergence
title_sort parameter estimation by minimizing a probability generating function based power divergence
topic Q Science (General)
QA Mathematics
work_keys_str_mv AT taysiewying parameterestimationbyminimizingaprobabilitygeneratingfunctionbasedpowerdivergence
AT ngchoungmin parameterestimationbyminimizingaprobabilitygeneratingfunctionbasedpowerdivergence
AT ongsenghuat parameterestimationbyminimizingaprobabilitygeneratingfunctionbasedpowerdivergence