Equilibrium kinetics and isotherm studies of CU (II) adsorption from waste water onto alkali activated oil palm ash

Problem statement: Heavy metal accumulation in waste water could affect aquatic life, human health and overall ecosystem adversely. Therefore, in recent years much emphasis has been given for the use of industrial waste material as low cost adsorbents for removal of metallic contaminants from waste...

Full description

Bibliographic Details
Main Authors: Chowdhury, Z.Z., Ahmed, A.A., Khan, R.A., Zain, Sharifuddin Md
Format: Article
Published: 2011
Subjects:
_version_ 1796945384152498176
author Chowdhury, Z.Z.
Ahmed, A.A.
Khan, R.A.
Zain, Sharifuddin Md
author_facet Chowdhury, Z.Z.
Ahmed, A.A.
Khan, R.A.
Zain, Sharifuddin Md
author_sort Chowdhury, Z.Z.
collection UM
description Problem statement: Heavy metal accumulation in waste water could affect aquatic life, human health and overall ecosystem adversely. Therefore, in recent years much emphasis has been given for the use of industrial waste material as low cost adsorbents for removal of metallic contaminants from waste water. Approach: Present study deals with the adsorption equilibrium and kinetics of Cu (II) cation using sodium hydroxide activated Oil Palm Ash (OPA). Adsorption was investigated in a batch system with respect to various parameters such as initial metal ion concentration, contact time and pH of the solution. Surface characterization of the prepared adsorbent was done by using surface area analyzer, Scanning Electron Microscope (SEM) and X-ray Fluorescence and compared with natural oil palm ash. The adsorption equilibrium data were best represented by Langmuir, Freundlich and Temkin model. Equilibrium kinetics studies were performed by Pseudo first order, Pseudo second order and Intra-particle diffusion. Results: Maximum monolayer adsorption capacity observed at 30°C was 18.86 mg g -1. Kinetic data correlated well with the pseudo second order model, suggesting that the adsorption process might be chemical sorption. The linear plots of intra particle diffusion revealed that the adsorption process was mainly governed by pore diffusion. Equilibrium uptake was increased with increase of initial concentration and contact time. Experimental data showed that about 96.03% of copper can be removed at pH 5.5. Conclusion: The research concluded that activation by alkali treatment of natural OPA would produce sufficient porosities and surface area and it has got good potential to remove Cu (II) from waste water. © 2010 Science Publications.
first_indexed 2024-03-06T05:15:50Z
format Article
id um.eprints-6052
institution Universiti Malaya
last_indexed 2024-03-06T05:15:50Z
publishDate 2011
record_format dspace
spelling um.eprints-60522019-10-25T09:13:02Z http://eprints.um.edu.my/6052/ Equilibrium kinetics and isotherm studies of CU (II) adsorption from waste water onto alkali activated oil palm ash Chowdhury, Z.Z. Ahmed, A.A. Khan, R.A. Zain, Sharifuddin Md QD Chemistry Problem statement: Heavy metal accumulation in waste water could affect aquatic life, human health and overall ecosystem adversely. Therefore, in recent years much emphasis has been given for the use of industrial waste material as low cost adsorbents for removal of metallic contaminants from waste water. Approach: Present study deals with the adsorption equilibrium and kinetics of Cu (II) cation using sodium hydroxide activated Oil Palm Ash (OPA). Adsorption was investigated in a batch system with respect to various parameters such as initial metal ion concentration, contact time and pH of the solution. Surface characterization of the prepared adsorbent was done by using surface area analyzer, Scanning Electron Microscope (SEM) and X-ray Fluorescence and compared with natural oil palm ash. The adsorption equilibrium data were best represented by Langmuir, Freundlich and Temkin model. Equilibrium kinetics studies were performed by Pseudo first order, Pseudo second order and Intra-particle diffusion. Results: Maximum monolayer adsorption capacity observed at 30°C was 18.86 mg g -1. Kinetic data correlated well with the pseudo second order model, suggesting that the adsorption process might be chemical sorption. The linear plots of intra particle diffusion revealed that the adsorption process was mainly governed by pore diffusion. Equilibrium uptake was increased with increase of initial concentration and contact time. Experimental data showed that about 96.03% of copper can be removed at pH 5.5. Conclusion: The research concluded that activation by alkali treatment of natural OPA would produce sufficient porosities and surface area and it has got good potential to remove Cu (II) from waste water. © 2010 Science Publications. 2011 Article PeerReviewed Chowdhury, Z.Z. and Ahmed, A.A. and Khan, R.A. and Zain, Sharifuddin Md (2011) Equilibrium kinetics and isotherm studies of CU (II) adsorption from waste water onto alkali activated oil palm ash. American Journal of Applied Sciences, 8 (3). pp. 230-237. ISSN 15469239, DOI https://doi.org/10.3844/ajassp.2011.230.237 <https://doi.org/10.3844/ajassp.2011.230.237>. http://www.scopus.com/inward/record.url?eid=2-s2.0-79953268179&partnerID=40&md5=930b77a56978704d39ac99779a0bd6e7 10.3844/ajassp.2011.230.237
spellingShingle QD Chemistry
Chowdhury, Z.Z.
Ahmed, A.A.
Khan, R.A.
Zain, Sharifuddin Md
Equilibrium kinetics and isotherm studies of CU (II) adsorption from waste water onto alkali activated oil palm ash
title Equilibrium kinetics and isotherm studies of CU (II) adsorption from waste water onto alkali activated oil palm ash
title_full Equilibrium kinetics and isotherm studies of CU (II) adsorption from waste water onto alkali activated oil palm ash
title_fullStr Equilibrium kinetics and isotherm studies of CU (II) adsorption from waste water onto alkali activated oil palm ash
title_full_unstemmed Equilibrium kinetics and isotherm studies of CU (II) adsorption from waste water onto alkali activated oil palm ash
title_short Equilibrium kinetics and isotherm studies of CU (II) adsorption from waste water onto alkali activated oil palm ash
title_sort equilibrium kinetics and isotherm studies of cu ii adsorption from waste water onto alkali activated oil palm ash
topic QD Chemistry
work_keys_str_mv AT chowdhuryzz equilibriumkineticsandisothermstudiesofcuiiadsorptionfromwastewaterontoalkaliactivatedoilpalmash
AT ahmedaa equilibriumkineticsandisothermstudiesofcuiiadsorptionfromwastewaterontoalkaliactivatedoilpalmash
AT khanra equilibriumkineticsandisothermstudiesofcuiiadsorptionfromwastewaterontoalkaliactivatedoilpalmash
AT zainsharifuddinmd equilibriumkineticsandisothermstudiesofcuiiadsorptionfromwastewaterontoalkaliactivatedoilpalmash