Comparative study of P-doped and undoped ZnO Nanostructures using thermal evaporation and vapor transport method

We report the synthesis of phosphorus-doped (P-doped) and undoped ZnO nanostructures using a thermal evaporation and vapor transport on Si(100) substrate without any catalyst and at atmospheric argon pressure. The structural and optical properties of P-doped ZnO nanostructures and undoped ZnO nanost...

Full description

Bibliographic Details
Main Authors: Al-Azri, K., Nor, R.M., Amin, Y.M., Al-Ruqeishi, M.S.
Format: Article
Published: 2012
Subjects:
Description
Summary:We report the synthesis of phosphorus-doped (P-doped) and undoped ZnO nanostructures using a thermal evaporation and vapor transport on Si(100) substrate without any catalyst and at atmospheric argon pressure. The structural and optical properties of P-doped ZnO nanostructures and undoped ZnO nanostructures have been extensively investigated using filed emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and Photoluminescence (PL). FESEM observation reveals that the morphology of ZnO nanostructures was changed from a hexagonal-like shape to a spherical shape when doping with P. While, XRD results indicate that P-doped ZnO nanostructures lost the (002) orientation preference and became randomly oriented. In addition, shifting of (002) diffraction peak has been found due to the incorporation of P into ZnO. Room temperature (PL) spectrum of P-doped ZnO nanostructures shows a high efficiency of green emission which was attributed to the presence of phosphorus atoms in the ZnO nanostructures. © 2012 Penerbit UTM Press. All rights reserved.