Performance of uncoated and coated carbide tools in the ultra-precision machining of stainless steel

Ultra-precision machines are widely used to turn aspherical or spherical profiles on mould inserts for the injection moulding of optical lenses. During the turning of a profile on a stainless steel mould insert, the cutting speed reduces significantly to 0 as the cutting tool is fed towards the cent...

Full description

Bibliographic Details
Main Authors: Liew, Willey Yun Hsien, Y.G. Lu, X. Ding, B.K.A. Ngoi, S. Yuan
Format: Article
Language:English
Published: Springer 2004
Subjects:
Online Access:https://eprints.ums.edu.my/id/eprint/20466/1/Performance%20of%20%20uncoated%20and%20coated%20carbide%20tools%20in%20the%20%20ultra.pdf
_version_ 1796909993284337664
author Liew, Willey Yun Hsien
Y.G. Lu
X. Ding
B.K.A. Ngoi
S. Yuan
author_facet Liew, Willey Yun Hsien
Y.G. Lu
X. Ding
B.K.A. Ngoi
S. Yuan
author_sort Liew, Willey Yun Hsien
collection UMS
description Ultra-precision machines are widely used to turn aspherical or spherical profiles on mould inserts for the injection moulding of optical lenses. During the turning of a profile on a stainless steel mould insert, the cutting speed reduces significantly to 0 as the cutting tool is fed towards the centre of the machined profile. This paper reports experiments carried out to study the wear of uncoated and PVD-coated carbide tools (carbide tool coated with 2000 alternate layers of AlN and TiN, each layer 1.5 nm and carbide tool coated with 0.5 μm TiN, 5.5 μm TiCN and 0.5 μm TiN) in the ultra-precision machining of STAVAX (modified AISI 420 stainless steel) at low speeds with and without lubricant. A sprayed mixture of compressed air, liquid paraffin oil and cyclomethicone was used as lubricant. Examination of the wear at the rake face of the tool suggests that during machining of the alloy with a hardness of 55 HRC without lubricant, the cutting edge is subjected to high compressive stress, resulting in fracture. Reducing the hardness of the alloy would therefore result in a lower stress acting on the cutting edge, thus rendering the tool less susceptible to fracture. Both the rake and the flank faces of the coated tools exhibited lower wear than the uncoated tools. This was due to the former tools possessing higher fracture resistance owing to the presence of the coating. The lubricant was effective in improving surface finish, preventing surface fracture and reducing flank wear.
first_indexed 2024-03-06T02:57:50Z
format Article
id ums.eprints-20466
institution Universiti Malaysia Sabah
language English
last_indexed 2024-03-06T02:57:50Z
publishDate 2004
publisher Springer
record_format dspace
spelling ums.eprints-204662018-07-12T06:00:26Z https://eprints.ums.edu.my/id/eprint/20466/ Performance of uncoated and coated carbide tools in the ultra-precision machining of stainless steel Liew, Willey Yun Hsien Y.G. Lu X. Ding B.K.A. Ngoi S. Yuan TA Engineering (General). Civil engineering (General) Ultra-precision machines are widely used to turn aspherical or spherical profiles on mould inserts for the injection moulding of optical lenses. During the turning of a profile on a stainless steel mould insert, the cutting speed reduces significantly to 0 as the cutting tool is fed towards the centre of the machined profile. This paper reports experiments carried out to study the wear of uncoated and PVD-coated carbide tools (carbide tool coated with 2000 alternate layers of AlN and TiN, each layer 1.5 nm and carbide tool coated with 0.5 μm TiN, 5.5 μm TiCN and 0.5 μm TiN) in the ultra-precision machining of STAVAX (modified AISI 420 stainless steel) at low speeds with and without lubricant. A sprayed mixture of compressed air, liquid paraffin oil and cyclomethicone was used as lubricant. Examination of the wear at the rake face of the tool suggests that during machining of the alloy with a hardness of 55 HRC without lubricant, the cutting edge is subjected to high compressive stress, resulting in fracture. Reducing the hardness of the alloy would therefore result in a lower stress acting on the cutting edge, thus rendering the tool less susceptible to fracture. Both the rake and the flank faces of the coated tools exhibited lower wear than the uncoated tools. This was due to the former tools possessing higher fracture resistance owing to the presence of the coating. The lubricant was effective in improving surface finish, preventing surface fracture and reducing flank wear. Springer 2004 Article PeerReviewed text en https://eprints.ums.edu.my/id/eprint/20466/1/Performance%20of%20%20uncoated%20and%20coated%20carbide%20tools%20in%20the%20%20ultra.pdf Liew, Willey Yun Hsien and Y.G. Lu and X. Ding and B.K.A. Ngoi and S. Yuan (2004) Performance of uncoated and coated carbide tools in the ultra-precision machining of stainless steel. Tribology Letters, 17 (2). pp. 851-857. ISSN 1573-2711
spellingShingle TA Engineering (General). Civil engineering (General)
Liew, Willey Yun Hsien
Y.G. Lu
X. Ding
B.K.A. Ngoi
S. Yuan
Performance of uncoated and coated carbide tools in the ultra-precision machining of stainless steel
title Performance of uncoated and coated carbide tools in the ultra-precision machining of stainless steel
title_full Performance of uncoated and coated carbide tools in the ultra-precision machining of stainless steel
title_fullStr Performance of uncoated and coated carbide tools in the ultra-precision machining of stainless steel
title_full_unstemmed Performance of uncoated and coated carbide tools in the ultra-precision machining of stainless steel
title_short Performance of uncoated and coated carbide tools in the ultra-precision machining of stainless steel
title_sort performance of uncoated and coated carbide tools in the ultra precision machining of stainless steel
topic TA Engineering (General). Civil engineering (General)
url https://eprints.ums.edu.my/id/eprint/20466/1/Performance%20of%20%20uncoated%20and%20coated%20carbide%20tools%20in%20the%20%20ultra.pdf
work_keys_str_mv AT liewwilleyyunhsien performanceofuncoatedandcoatedcarbidetoolsintheultraprecisionmachiningofstainlesssteel
AT yglu performanceofuncoatedandcoatedcarbidetoolsintheultraprecisionmachiningofstainlesssteel
AT xding performanceofuncoatedandcoatedcarbidetoolsintheultraprecisionmachiningofstainlesssteel
AT bkangoi performanceofuncoatedandcoatedcarbidetoolsintheultraprecisionmachiningofstainlesssteel
AT syuan performanceofuncoatedandcoatedcarbidetoolsintheultraprecisionmachiningofstainlesssteel