Danger theory inspired artificial immune system for pattern recognition

Increasing intensive studies on reflecting human immune system's mechanism in computer systems has developed a new computing framework which is called the Artificial Immune System (AIS). Numerous AIS-based applications have been discovered such as anomaly detection system and user-preference b...

Full description

Bibliographic Details
Main Authors: Chung Seng Kheau, Rayner Alfred, Lau, Hui Keng, Jason Teo, Mohd. Hanafi Ahmad Hijazi, Nurul'alam Mohd. Yaakub
Format: Research Report
Language:English
Published: Universiti Malaysia Sabah 2007
Subjects:
Online Access:https://eprints.ums.edu.my/id/eprint/22875/1/Danger%20theory%20inspired%20artificial%20immune%20system%20for%20pattern%20recognition.pdf
_version_ 1825713669986582528
author Chung Seng Kheau
Rayner Alfred
Lau, Hui Keng
Jason Teo
Mohd. Hanafi Ahmad Hijazi
Nurul'alam Mohd. Yaakub
author_facet Chung Seng Kheau
Rayner Alfred
Lau, Hui Keng
Jason Teo
Mohd. Hanafi Ahmad Hijazi
Nurul'alam Mohd. Yaakub
author_sort Chung Seng Kheau
collection UMS
description Increasing intensive studies on reflecting human immune system's mechanism in computer systems has developed a new computing framework which is called the Artificial Immune System (AIS). Numerous AIS-based applications have been discovered such as anomaly detection system and user-preference based web contents applications of which possess pattern recognition ability. Negative Selection (NS) algorithm is the most commonly researched algorithm within the AIS framework. NS algorithm discriminates 'self' and 'non-self' patterns by acknowledging incoming negative instances. However, as immunology evolves, a theory, the Danger Theory (On, suggested that immune system reacts towards danger signals rather than self and non-self discrimination. Based on ongoing initiatives in outlining OT algorithm, this research evaluates the performance of OT against NS algorithm within pattern recognition domain. Perkembangan kajian intensif dalam penafsiran sistem immunisasi manusia kepada sistem komputer telah melahirkan rangka kerja teknologi komputer baru yang juga dikenali sebagai Sistem Imun Buatan atau Artirlcial Immune Systems (AIS). Pelbagai aplikasi berdasarkan AlS telah dipelopori seperti sistem pengesan kelainan dan kandungan laman sesawang teradaptasi berdasarkan kecenderungan pengguna yang mana keduanya mempunyai kebolehan untuk pengesanan pola. Algoritma Pemilihan Negatif ataupun Negative Selection (NS) adalah antara algoritma yang paling popular dalam kajian rangka kerja AlS. Algoritma NS mampu membezakan corak data 'diri' dan 'bukan diri' dengan meramal dan mempelajari data negatif. Walaubagaimanapun, evolusi kajian dalam bidang imunisasi telah menemukan Teori Bahaya atau Danger Theory (On yang mencadangkan bahawa sistem imun lebih memberikan reaksi terhadap isyarat bahaya daripada kebolehan mendiskriminasi 'diri' dan 'bukan diri'. Berdasarkan penemuan kajian OT yang terkini, penilaian terhadap algoritma OT dan NS dalam pengesanan pola dijalankan sebagai agenda utama kajian ini.
first_indexed 2024-03-06T03:00:08Z
format Research Report
id ums.eprints-22875
institution Universiti Malaysia Sabah
language English
last_indexed 2024-03-06T03:00:08Z
publishDate 2007
publisher Universiti Malaysia Sabah
record_format dspace
spelling ums.eprints-228752019-07-19T07:29:21Z https://eprints.ums.edu.my/id/eprint/22875/ Danger theory inspired artificial immune system for pattern recognition Chung Seng Kheau Rayner Alfred Lau, Hui Keng Jason Teo Mohd. Hanafi Ahmad Hijazi Nurul'alam Mohd. Yaakub R Medicine (General) Increasing intensive studies on reflecting human immune system's mechanism in computer systems has developed a new computing framework which is called the Artificial Immune System (AIS). Numerous AIS-based applications have been discovered such as anomaly detection system and user-preference based web contents applications of which possess pattern recognition ability. Negative Selection (NS) algorithm is the most commonly researched algorithm within the AIS framework. NS algorithm discriminates 'self' and 'non-self' patterns by acknowledging incoming negative instances. However, as immunology evolves, a theory, the Danger Theory (On, suggested that immune system reacts towards danger signals rather than self and non-self discrimination. Based on ongoing initiatives in outlining OT algorithm, this research evaluates the performance of OT against NS algorithm within pattern recognition domain. Perkembangan kajian intensif dalam penafsiran sistem immunisasi manusia kepada sistem komputer telah melahirkan rangka kerja teknologi komputer baru yang juga dikenali sebagai Sistem Imun Buatan atau Artirlcial Immune Systems (AIS). Pelbagai aplikasi berdasarkan AlS telah dipelopori seperti sistem pengesan kelainan dan kandungan laman sesawang teradaptasi berdasarkan kecenderungan pengguna yang mana keduanya mempunyai kebolehan untuk pengesanan pola. Algoritma Pemilihan Negatif ataupun Negative Selection (NS) adalah antara algoritma yang paling popular dalam kajian rangka kerja AlS. Algoritma NS mampu membezakan corak data 'diri' dan 'bukan diri' dengan meramal dan mempelajari data negatif. Walaubagaimanapun, evolusi kajian dalam bidang imunisasi telah menemukan Teori Bahaya atau Danger Theory (On yang mencadangkan bahawa sistem imun lebih memberikan reaksi terhadap isyarat bahaya daripada kebolehan mendiskriminasi 'diri' dan 'bukan diri'. Berdasarkan penemuan kajian OT yang terkini, penilaian terhadap algoritma OT dan NS dalam pengesanan pola dijalankan sebagai agenda utama kajian ini. Universiti Malaysia Sabah 2007 Research Report NonPeerReviewed text en https://eprints.ums.edu.my/id/eprint/22875/1/Danger%20theory%20inspired%20artificial%20immune%20system%20for%20pattern%20recognition.pdf Chung Seng Kheau and Rayner Alfred and Lau, Hui Keng and Jason Teo and Mohd. Hanafi Ahmad Hijazi and Nurul'alam Mohd. Yaakub (2007) Danger theory inspired artificial immune system for pattern recognition. (Unpublished)
spellingShingle R Medicine (General)
Chung Seng Kheau
Rayner Alfred
Lau, Hui Keng
Jason Teo
Mohd. Hanafi Ahmad Hijazi
Nurul'alam Mohd. Yaakub
Danger theory inspired artificial immune system for pattern recognition
title Danger theory inspired artificial immune system for pattern recognition
title_full Danger theory inspired artificial immune system for pattern recognition
title_fullStr Danger theory inspired artificial immune system for pattern recognition
title_full_unstemmed Danger theory inspired artificial immune system for pattern recognition
title_short Danger theory inspired artificial immune system for pattern recognition
title_sort danger theory inspired artificial immune system for pattern recognition
topic R Medicine (General)
url https://eprints.ums.edu.my/id/eprint/22875/1/Danger%20theory%20inspired%20artificial%20immune%20system%20for%20pattern%20recognition.pdf
work_keys_str_mv AT chungsengkheau dangertheoryinspiredartificialimmunesystemforpatternrecognition
AT rayneralfred dangertheoryinspiredartificialimmunesystemforpatternrecognition
AT lauhuikeng dangertheoryinspiredartificialimmunesystemforpatternrecognition
AT jasonteo dangertheoryinspiredartificialimmunesystemforpatternrecognition
AT mohdhanafiahmadhijazi dangertheoryinspiredartificialimmunesystemforpatternrecognition
AT nurulalammohdyaakub dangertheoryinspiredartificialimmunesystemforpatternrecognition