Parameter estimations of the generalized extreme value distributions for small sample size

The standard method of the maximum likelihood has poor performance in GEV parameter estimates for small sample data. This study aims to explore the Generalized Extreme Value (GEV) parameter estimation using several methods focusing on small sample size of an extreme event. We conducted simulation st...

Full description

Bibliographic Details
Main Authors: Razira Aniza Roslan, Chin, Su Na, Darmesah Gabda
Format: Article
Language:English
Published: 2020
Subjects:
Online Access:https://eprints.ums.edu.my/id/eprint/25714/1/Parameter%20estimations%20of%20the%20generalized%20extreme%20value%20distributions%20for%20small%20sample%20size.pdf
_version_ 1825713917748314112
author Razira Aniza Roslan
Chin, Su Na
Darmesah Gabda
author_facet Razira Aniza Roslan
Chin, Su Na
Darmesah Gabda
author_sort Razira Aniza Roslan
collection UMS
description The standard method of the maximum likelihood has poor performance in GEV parameter estimates for small sample data. This study aims to explore the Generalized Extreme Value (GEV) parameter estimation using several methods focusing on small sample size of an extreme event. We conducted simulation study to illustrate the performance of different methods such as the Maximum Likelihood (MLE), probability weighted moment (PWM) and the penalized likelihood method (PMLE) in estimating the GEV parameters. Based on the simulation results, we then applied the superior method in modelling the annual maximum stream flow in Sabah. The result of the simulation study shows that the PMLE gives better estimate compared to MLE and PMW as it has small bias and root mean square errors, RMSE. For an application, we can then compute the estimate of return level of river flow in Sabah.
first_indexed 2024-03-06T03:04:00Z
format Article
id ums.eprints-25714
institution Universiti Malaysia Sabah
language English
last_indexed 2024-03-06T03:04:00Z
publishDate 2020
record_format dspace
spelling ums.eprints-257142020-07-28T01:37:25Z https://eprints.ums.edu.my/id/eprint/25714/ Parameter estimations of the generalized extreme value distributions for small sample size Razira Aniza Roslan Chin, Su Na Darmesah Gabda QC Physics The standard method of the maximum likelihood has poor performance in GEV parameter estimates for small sample data. This study aims to explore the Generalized Extreme Value (GEV) parameter estimation using several methods focusing on small sample size of an extreme event. We conducted simulation study to illustrate the performance of different methods such as the Maximum Likelihood (MLE), probability weighted moment (PWM) and the penalized likelihood method (PMLE) in estimating the GEV parameters. Based on the simulation results, we then applied the superior method in modelling the annual maximum stream flow in Sabah. The result of the simulation study shows that the PMLE gives better estimate compared to MLE and PMW as it has small bias and root mean square errors, RMSE. For an application, we can then compute the estimate of return level of river flow in Sabah. 2020 Article PeerReviewed text en https://eprints.ums.edu.my/id/eprint/25714/1/Parameter%20estimations%20of%20the%20generalized%20extreme%20value%20distributions%20for%20small%20sample%20size.pdf Razira Aniza Roslan and Chin, Su Na and Darmesah Gabda (2020) Parameter estimations of the generalized extreme value distributions for small sample size. Mathematics and Statistics, 8 (2a). pp. 47-51. https://doi.org/10.13189/ms.2020.081308
spellingShingle QC Physics
Razira Aniza Roslan
Chin, Su Na
Darmesah Gabda
Parameter estimations of the generalized extreme value distributions for small sample size
title Parameter estimations of the generalized extreme value distributions for small sample size
title_full Parameter estimations of the generalized extreme value distributions for small sample size
title_fullStr Parameter estimations of the generalized extreme value distributions for small sample size
title_full_unstemmed Parameter estimations of the generalized extreme value distributions for small sample size
title_short Parameter estimations of the generalized extreme value distributions for small sample size
title_sort parameter estimations of the generalized extreme value distributions for small sample size
topic QC Physics
url https://eprints.ums.edu.my/id/eprint/25714/1/Parameter%20estimations%20of%20the%20generalized%20extreme%20value%20distributions%20for%20small%20sample%20size.pdf
work_keys_str_mv AT raziraanizaroslan parameterestimationsofthegeneralizedextremevaluedistributionsforsmallsamplesize
AT chinsuna parameterestimationsofthegeneralizedextremevaluedistributionsforsmallsamplesize
AT darmesahgabda parameterestimationsofthegeneralizedextremevaluedistributionsforsmallsamplesize