Poly(hydroxamic acid) ligand from palm‐based waste materials for removal of heavy metals from electroplating wastewater
Heavy metals pollutants are nonbiodegradable and their bioaccumulation results in detrimental environmental consequences. Therefore, it is important to effectively remove toxic heavy metal waste from industrial sewage. Thus, the main goal of this research is to synthesize an ideal cellulose‐based ad...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
John Wiley & Sons Inc.
2021
|
Subjects: | |
Online Access: | https://eprints.ums.edu.my/id/eprint/26135/1/Poly%28hydroxamic%20acid%29%20ligand%20from%20palm%E2%80%90based%20waste%20materials%20for%20removal%20of%20heavy%20metals%20from%20electroplating%20wastewater.pdf |
_version_ | 1796910467036217344 |
---|---|
author | Md Lutfor Rahman Zhi Jian Wong Mohd Sani Sarjadi Mohd Harun Abdullah Mohd Harun Abdullah Maria A. Heffernan Md Shaheen Sarkar Emmet O'Reilly |
author_facet | Md Lutfor Rahman Zhi Jian Wong Mohd Sani Sarjadi Mohd Harun Abdullah Mohd Harun Abdullah Maria A. Heffernan Md Shaheen Sarkar Emmet O'Reilly |
author_sort | Md Lutfor Rahman |
collection | UMS |
description | Heavy metals pollutants are nonbiodegradable and their bioaccumulation results in detrimental environmental consequences. Therefore, it is important to effectively remove toxic heavy metal waste from industrial sewage. Thus, the main goal of this research is to synthesize an ideal cellulose‐based adsorbent from palm‐based waste materials (agro waste) in order to be utilized in real‐life practical applications with low cost as such removing common toxic heavy metals from industrial effluents. A poly(methyl acrylate) grafted palm cellulose was synthesized via a free‐radical initiation process, followed by an oximation reaction to yield poly(hydroxamic acid) ligands. The adsorption capacity (qe) of poly(hydroxamic acid) ligands for metal ions such as copper (Cu2+), iron (Fe3+), and lead (Pb2+) were 325, 220, and 300 mg g−1, respectively at pH 6. In addition, the X‐ray photoelectron spectrometry results are to be proved the binding of metal ions, for instance, Cu(II) ions showed typically significant BEs of 932.7 and 952.0 eV corresponding to the Cu2p3/2 and Cu2p1/2 species. The heavy metal ions adsorption followed a pseudo‐first‐order kinetic model pathway. The adsorption capacity (qm) is also derived from the Langmuir isotherm linear plot, which does not showed good correction coefficients. However, the results were correlated to the Freundlich isotherm model, where the R2 value showed significance (>0.98), indicating that multiple layer adsorption occurs on the synthesized ligand. The synthesized polymeric ligand is an excellent adsorbent for the removal of heavy metals from the industrial wastewater. In addition, the metal analysis results showed that about 98% removal of copper and iron ions from electroplating wastewater including lead, nickel, and chromium can be removed up to 85–97%. |
first_indexed | 2024-03-06T03:04:53Z |
format | Article |
id | ums.eprints-26135 |
institution | Universiti Malaysia Sabah |
language | English |
last_indexed | 2024-03-06T03:04:53Z |
publishDate | 2021 |
publisher | John Wiley & Sons Inc. |
record_format | dspace |
spelling | ums.eprints-261352020-10-19T13:18:23Z https://eprints.ums.edu.my/id/eprint/26135/ Poly(hydroxamic acid) ligand from palm‐based waste materials for removal of heavy metals from electroplating wastewater Md Lutfor Rahman Zhi Jian Wong Mohd Sani Sarjadi Mohd Harun Abdullah Mohd Harun Abdullah Maria A. Heffernan Md Shaheen Sarkar Emmet O'Reilly Q Science (General) Heavy metals pollutants are nonbiodegradable and their bioaccumulation results in detrimental environmental consequences. Therefore, it is important to effectively remove toxic heavy metal waste from industrial sewage. Thus, the main goal of this research is to synthesize an ideal cellulose‐based adsorbent from palm‐based waste materials (agro waste) in order to be utilized in real‐life practical applications with low cost as such removing common toxic heavy metals from industrial effluents. A poly(methyl acrylate) grafted palm cellulose was synthesized via a free‐radical initiation process, followed by an oximation reaction to yield poly(hydroxamic acid) ligands. The adsorption capacity (qe) of poly(hydroxamic acid) ligands for metal ions such as copper (Cu2+), iron (Fe3+), and lead (Pb2+) were 325, 220, and 300 mg g−1, respectively at pH 6. In addition, the X‐ray photoelectron spectrometry results are to be proved the binding of metal ions, for instance, Cu(II) ions showed typically significant BEs of 932.7 and 952.0 eV corresponding to the Cu2p3/2 and Cu2p1/2 species. The heavy metal ions adsorption followed a pseudo‐first‐order kinetic model pathway. The adsorption capacity (qm) is also derived from the Langmuir isotherm linear plot, which does not showed good correction coefficients. However, the results were correlated to the Freundlich isotherm model, where the R2 value showed significance (>0.98), indicating that multiple layer adsorption occurs on the synthesized ligand. The synthesized polymeric ligand is an excellent adsorbent for the removal of heavy metals from the industrial wastewater. In addition, the metal analysis results showed that about 98% removal of copper and iron ions from electroplating wastewater including lead, nickel, and chromium can be removed up to 85–97%. John Wiley & Sons Inc. 2021-01 Article PeerReviewed text en https://eprints.ums.edu.my/id/eprint/26135/1/Poly%28hydroxamic%20acid%29%20ligand%20from%20palm%E2%80%90based%20waste%20materials%20for%20removal%20of%20heavy%20metals%20from%20electroplating%20wastewater.pdf Md Lutfor Rahman and Zhi Jian Wong and Mohd Sani Sarjadi and Mohd Harun Abdullah and Mohd Harun Abdullah and Maria A. Heffernan and Md Shaheen Sarkar and Emmet O'Reilly (2021) Poly(hydroxamic acid) ligand from palm‐based waste materials for removal of heavy metals from electroplating wastewater. Journal of Applied Polymer Science, 138 (2). ISSN 0021-8995 |
spellingShingle | Q Science (General) Md Lutfor Rahman Zhi Jian Wong Mohd Sani Sarjadi Mohd Harun Abdullah Mohd Harun Abdullah Maria A. Heffernan Md Shaheen Sarkar Emmet O'Reilly Poly(hydroxamic acid) ligand from palm‐based waste materials for removal of heavy metals from electroplating wastewater |
title | Poly(hydroxamic acid) ligand from palm‐based waste materials for removal of heavy metals from electroplating wastewater |
title_full | Poly(hydroxamic acid) ligand from palm‐based waste materials for removal of heavy metals from electroplating wastewater |
title_fullStr | Poly(hydroxamic acid) ligand from palm‐based waste materials for removal of heavy metals from electroplating wastewater |
title_full_unstemmed | Poly(hydroxamic acid) ligand from palm‐based waste materials for removal of heavy metals from electroplating wastewater |
title_short | Poly(hydroxamic acid) ligand from palm‐based waste materials for removal of heavy metals from electroplating wastewater |
title_sort | poly hydroxamic acid ligand from palm based waste materials for removal of heavy metals from electroplating wastewater |
topic | Q Science (General) |
url | https://eprints.ums.edu.my/id/eprint/26135/1/Poly%28hydroxamic%20acid%29%20ligand%20from%20palm%E2%80%90based%20waste%20materials%20for%20removal%20of%20heavy%20metals%20from%20electroplating%20wastewater.pdf |
work_keys_str_mv | AT mdlutforrahman polyhydroxamicacidligandfrompalmbasedwastematerialsforremovalofheavymetalsfromelectroplatingwastewater AT zhijianwong polyhydroxamicacidligandfrompalmbasedwastematerialsforremovalofheavymetalsfromelectroplatingwastewater AT mohdsanisarjadi polyhydroxamicacidligandfrompalmbasedwastematerialsforremovalofheavymetalsfromelectroplatingwastewater AT mohdharunabdullah polyhydroxamicacidligandfrompalmbasedwastematerialsforremovalofheavymetalsfromelectroplatingwastewater AT mohdharunabdullah polyhydroxamicacidligandfrompalmbasedwastematerialsforremovalofheavymetalsfromelectroplatingwastewater AT mariaaheffernan polyhydroxamicacidligandfrompalmbasedwastematerialsforremovalofheavymetalsfromelectroplatingwastewater AT mdshaheensarkar polyhydroxamicacidligandfrompalmbasedwastematerialsforremovalofheavymetalsfromelectroplatingwastewater AT emmetoreilly polyhydroxamicacidligandfrompalmbasedwastematerialsforremovalofheavymetalsfromelectroplatingwastewater |