Sarcasm detection and classification to support sentiment analysis: a study in Malay social media

The classification of users’ sentiment from social media data can be used to determine public opinion on certain issues. The presence of sarcasm in text may hamper the performance of sentiment analysis. This thesis presents research work conducted on sarcasm detection and classification to support...

Full description

Bibliographic Details
Main Author: Mohd Suhairi Md Suhaimin
Format: Thesis
Language:English
Published: Utusan Borneo 2017
Online Access:https://eprints.ums.edu.my/id/eprint/27023/1/Sarcasm%20detection%20and%20classification%20to%20support%20sentiment%20analysis.pdf
_version_ 1796910585074417664
author Mohd Suhairi Md Suhaimin
author_facet Mohd Suhairi Md Suhaimin
author_sort Mohd Suhairi Md Suhaimin
collection UMS
description The classification of users’ sentiment from social media data can be used to determine public opinion on certain issues. The presence of sarcasm in text may hamper the performance of sentiment analysis. This thesis presents research work conducted on sarcasm detection and classification to support sentiment analysis. A Malay social media dataset, specifically focused on economic and political domain, was acquired from public comments posted on Facebook. The proposed work consists of two phases: (i) sarcasm detection and (ii) sentiment analysis with sarcasm detection and classification. In the first phase, the development of a mechanism for detecting sarcasm on bilingual data was explored. To achieve this, a feature extraction process was proposed to identify sarcasm features. Five feature categories of that can be extracted using natural language processing were considered: lexical, pragmatic, prosodic, syntactic and idiosyncratic. A non-linear Support Vector Machines classifier was employed to measure the performance of the features using the adopted evaluation metric, average Fmeasure. The best-performing features were then used as input for the second phase. In the second phase, a framework for sentiment analysis that considers sarcasm detection and classification was proposed. The framework consists of six modules, namely preprocessing, feature extraction, feature selection, sentiment classification, sarcasm detection and classification, and actual sentiment classification. Results obtained from the evaluation conducted demonstrate that the proposed features and framework are able to improve the performance of sentiment analysis. The best performance for sarcasm detection was found using a combination of syntactic, pragmatic, and prosodic features with an average F-measure score of 0.852. The best result of sentiment classification using the proposed framework, considering both sarcasm detection and classification, recorded an average F-measure score of 0.905, outperforming the baseline sentiment classification score of 0.839.
first_indexed 2024-03-06T03:06:40Z
format Thesis
id ums.eprints-27023
institution Universiti Malaysia Sabah
language English
last_indexed 2024-03-06T03:06:40Z
publishDate 2017
publisher Utusan Borneo
record_format dspace
spelling ums.eprints-270232021-06-02T03:21:46Z https://eprints.ums.edu.my/id/eprint/27023/ Sarcasm detection and classification to support sentiment analysis: a study in Malay social media Mohd Suhairi Md Suhaimin The classification of users’ sentiment from social media data can be used to determine public opinion on certain issues. The presence of sarcasm in text may hamper the performance of sentiment analysis. This thesis presents research work conducted on sarcasm detection and classification to support sentiment analysis. A Malay social media dataset, specifically focused on economic and political domain, was acquired from public comments posted on Facebook. The proposed work consists of two phases: (i) sarcasm detection and (ii) sentiment analysis with sarcasm detection and classification. In the first phase, the development of a mechanism for detecting sarcasm on bilingual data was explored. To achieve this, a feature extraction process was proposed to identify sarcasm features. Five feature categories of that can be extracted using natural language processing were considered: lexical, pragmatic, prosodic, syntactic and idiosyncratic. A non-linear Support Vector Machines classifier was employed to measure the performance of the features using the adopted evaluation metric, average Fmeasure. The best-performing features were then used as input for the second phase. In the second phase, a framework for sentiment analysis that considers sarcasm detection and classification was proposed. The framework consists of six modules, namely preprocessing, feature extraction, feature selection, sentiment classification, sarcasm detection and classification, and actual sentiment classification. Results obtained from the evaluation conducted demonstrate that the proposed features and framework are able to improve the performance of sentiment analysis. The best performance for sarcasm detection was found using a combination of syntactic, pragmatic, and prosodic features with an average F-measure score of 0.852. The best result of sentiment classification using the proposed framework, considering both sarcasm detection and classification, recorded an average F-measure score of 0.905, outperforming the baseline sentiment classification score of 0.839. Utusan Borneo 2017-05-23 Thesis NonPeerReviewed text en https://eprints.ums.edu.my/id/eprint/27023/1/Sarcasm%20detection%20and%20classification%20to%20support%20sentiment%20analysis.pdf Mohd Suhairi Md Suhaimin (2017) Sarcasm detection and classification to support sentiment analysis: a study in Malay social media. Masters thesis, Universiti Malaysia Sabah.
spellingShingle Mohd Suhairi Md Suhaimin
Sarcasm detection and classification to support sentiment analysis: a study in Malay social media
title Sarcasm detection and classification to support sentiment analysis: a study in Malay social media
title_full Sarcasm detection and classification to support sentiment analysis: a study in Malay social media
title_fullStr Sarcasm detection and classification to support sentiment analysis: a study in Malay social media
title_full_unstemmed Sarcasm detection and classification to support sentiment analysis: a study in Malay social media
title_short Sarcasm detection and classification to support sentiment analysis: a study in Malay social media
title_sort sarcasm detection and classification to support sentiment analysis a study in malay social media
url https://eprints.ums.edu.my/id/eprint/27023/1/Sarcasm%20detection%20and%20classification%20to%20support%20sentiment%20analysis.pdf
work_keys_str_mv AT mohdsuhairimdsuhaimin sarcasmdetectionandclassificationtosupportsentimentanalysisastudyinmalaysocialmedia