Optoelectronic properties comparison of 10 and 20 multi quantum wells Ga0.952In0.048N0.016As0.984/GaAs p-i-n photodetector for 1.0 µm wavelength
This study proves the addition of quantum wells to the intrinsic regions of p-i-n GaInNAs/GaAs has improved the performance of optoelectronic devices. The optoelectronic properties that contribute to the device's dark current and photocurrent need to be well understood to develop photo-response...
প্রধান লেখক: | , , , , , , , |
---|---|
বিন্যাস: | প্রবন্ধ |
ভাষা: | English English |
প্রকাশিত: |
Elsevier
2022
|
বিষয়গুলি: | |
অনলাইন ব্যবহার করুন: | https://eprints.ums.edu.my/id/eprint/33536/1/Optoelectronic%20properties%20comparison%20of%2010%20and%2020%20multi%20quantum%20wells%20Ga0.952In0.048N0.016As0.984GaAs%20p-i-n%20photodetector%20for%201.0%20%C2%B5m%20wavelength.pdf https://eprints.ums.edu.my/id/eprint/33536/3/Optoelectronic%20properties%20comparison%20of%2010%20and%2020%20multi%20quantum%20wells%20Ga0.952In0.048N0.016As0.984%20_ABSTRACT.pdf |
সংক্ষিপ্ত: | This study proves the addition of quantum wells to the intrinsic regions of p-i-n GaInNAs/GaAs has improved the performance of optoelectronic devices. The optoelectronic properties that contribute to the device's dark current and photocurrent need to be well understood to develop photo-response at longer wavelengths. This study reports an optoelectronic properties comparison of different quantum well number for Ga0.952In0.048N0.016As0.984/GaAs-based dilute nitride multi-quantum wells (MQWs) p-i-n photodetector devices. From photoluminescence (PL) analysis, 20 MQWs shows a higher PL peak than 10 MQWs. The maximum quantum efficiency (QE) is found to be 80.3% for 20 MQWs and 46% for 10 MQWs, where 20 MQWs being the highest QE value ever reported for GaInNAs-based MQWs photodetector. Current versus voltage (I–V) measurement shows that 20 MQWs produces lower dark current than 10 MQWs. Besides, 20 QWs sample produces a higher current density (−12.43 μAcm−2) than 10 MQWs (−7.52 μAcm−2) under illumination. Impedance spectroscopy analysis shows that a lower dark current of 20 MQWs is due to a high intrinsic resistivity and low dielectric loss peak compared to 10 MQWs. SimWindows simulation shows good correlation with responsivity analysis and impedance analysis where at −5 V, 20 MQWs produces higher responsivity (0.65AW-1) due to wider depletion region (deduce from conduction band profile) and lower intrinsic capacitance and dielectric loss (deduces from impedance analysis) than 10 MQWs (0.37AW-1). At room temperature, the detectivity (D*) of the 20 MQWs photodetector (7.12 × 1010 cmHz0.5W−1) is higher than 10 MQWS photodetector (4.89 × 1010 cmHz0.5W−1). Finally, the 20 MQWs's (4.02 × 10−11 WHz−0.5) has produces lower noise-equivalent power (NEP) than 10 MQWs (5.85 × 10−11 WHz−0.5). This study has successfully presenting an understanding of optoelectronic properties and simultaneously producing a sensitive photodetector with high quality, low-noise which is comparable with ∼1010 cmHz0.5W−1 of commercial III-V alloy based near-infrared GaAs-based photodetectors. |
---|