Spatio-temporal analysis of dengue cases in Sabah

Introduction: Dengue fever is a significant public health issue worldwide. Geographic Information System is a powerful tool in public health, allowing for the analysis and visualisation of spatial data to understand disease distribution and identify clusters of cases. Therefore, this study aims to d...

Full description

Bibliographic Details
Main Authors: Priya Dharishini Kunasagran, Syed Sharizman Syed Abdul Rahim, Mohammad Saffree Jeffree, Azman Atil, Aizuddin Hidrus, Khalid Mokti, Mohammad Aklil Abd Rahim, Adora J Muyou, Sheila Miriam Mujin, Nabihah Ali, Norsyahida Md Taib, S Muhammad Izuddin Rabbani Mohd Zali, Rahmat Dapari, Zahir Izuan Azhar, Koay Teng Khoon
Format: Article
Language:English
Published: Universiti Putra Malaysia 2023
Subjects:
Online Access:https://eprints.ums.edu.my/id/eprint/42554/1/FULL%20TEXT.pdf
_version_ 1825716057597280256
author Priya Dharishini Kunasagran
Syed Sharizman Syed Abdul Rahim
Mohammad Saffree Jeffree
Azman Atil
Aizuddin Hidrus
Khalid Mokti
Mohammad Aklil Abd Rahim
Adora J Muyou
Sheila Miriam Mujin
Nabihah Ali
Norsyahida Md Taib
S Muhammad Izuddin Rabbani Mohd Zali
Rahmat Dapari
Zahir Izuan Azhar
Koay Teng Khoon
author_facet Priya Dharishini Kunasagran
Syed Sharizman Syed Abdul Rahim
Mohammad Saffree Jeffree
Azman Atil
Aizuddin Hidrus
Khalid Mokti
Mohammad Aklil Abd Rahim
Adora J Muyou
Sheila Miriam Mujin
Nabihah Ali
Norsyahida Md Taib
S Muhammad Izuddin Rabbani Mohd Zali
Rahmat Dapari
Zahir Izuan Azhar
Koay Teng Khoon
author_sort Priya Dharishini Kunasagran
collection UMS
description Introduction: Dengue fever is a significant public health issue worldwide. Geographic Information System is a powerful tool in public health, allowing for the analysis and visualisation of spatial data to understand disease distribution and identify clusters of cases. Therefore, this study aims to determine the spatiotemporal distribution of dengue cases in Sabah. Methods: Quantum Geospatial Information System (QGIS) and GeoDa software were used to determine the spatial distribution, pattern, and cluster analysis. Results: The spatial distribution of dengue cases shifted, with most cases concentrated on the east coast of Sabah. The distribution of dengue cases in Beluran, Tenom, Kota Marudu, Kudat, Keningau, and Papar changed from 2017 to 2020. The scatter plots of Moran’s index values were generated to analyse the spatial clustering of dengue cases in Sabah over four years: 2017 (Moran’s index = 0.271), 2018 (Moran’s index = 0.333), 2019 (Moran’s index = 0.367), and 2020 (Moran’s index = 0.294). The statistical significance of clustering was established by observing p-values below the threshold of 0.05 for all four years. Local indicators of spatial association showed the spatial autocorrelation pattern of high-high (hotspot) areas with elevated dengue incidence and low-low (cold-spot) areas with relatively lower dengue rates. Conclusion: This study has provided evidence of dengue case distribution patterns, spatial clustering, and hotspot and coldspot areas. Prioritising these clusters can improve planning and resource allocation for more efficient dengue prevention and control.
first_indexed 2025-03-05T01:35:13Z
format Article
id ums.eprints-42554
institution Universiti Malaysia Sabah
language English
last_indexed 2025-03-05T01:35:13Z
publishDate 2023
publisher Universiti Putra Malaysia
record_format dspace
spelling ums.eprints-425542025-01-07T04:05:09Z https://eprints.ums.edu.my/id/eprint/42554/ Spatio-temporal analysis of dengue cases in Sabah Priya Dharishini Kunasagran Syed Sharizman Syed Abdul Rahim Mohammad Saffree Jeffree Azman Atil Aizuddin Hidrus Khalid Mokti Mohammad Aklil Abd Rahim Adora J Muyou Sheila Miriam Mujin Nabihah Ali Norsyahida Md Taib S Muhammad Izuddin Rabbani Mohd Zali Rahmat Dapari Zahir Izuan Azhar Koay Teng Khoon RA643-645 Disease (Communicable and noninfectious) and public health Introduction: Dengue fever is a significant public health issue worldwide. Geographic Information System is a powerful tool in public health, allowing for the analysis and visualisation of spatial data to understand disease distribution and identify clusters of cases. Therefore, this study aims to determine the spatiotemporal distribution of dengue cases in Sabah. Methods: Quantum Geospatial Information System (QGIS) and GeoDa software were used to determine the spatial distribution, pattern, and cluster analysis. Results: The spatial distribution of dengue cases shifted, with most cases concentrated on the east coast of Sabah. The distribution of dengue cases in Beluran, Tenom, Kota Marudu, Kudat, Keningau, and Papar changed from 2017 to 2020. The scatter plots of Moran’s index values were generated to analyse the spatial clustering of dengue cases in Sabah over four years: 2017 (Moran’s index = 0.271), 2018 (Moran’s index = 0.333), 2019 (Moran’s index = 0.367), and 2020 (Moran’s index = 0.294). The statistical significance of clustering was established by observing p-values below the threshold of 0.05 for all four years. Local indicators of spatial association showed the spatial autocorrelation pattern of high-high (hotspot) areas with elevated dengue incidence and low-low (cold-spot) areas with relatively lower dengue rates. Conclusion: This study has provided evidence of dengue case distribution patterns, spatial clustering, and hotspot and coldspot areas. Prioritising these clusters can improve planning and resource allocation for more efficient dengue prevention and control. Universiti Putra Malaysia 2023 Article NonPeerReviewed text en https://eprints.ums.edu.my/id/eprint/42554/1/FULL%20TEXT.pdf Priya Dharishini Kunasagran and Syed Sharizman Syed Abdul Rahim and Mohammad Saffree Jeffree and Azman Atil and Aizuddin Hidrus and Khalid Mokti and Mohammad Aklil Abd Rahim and Adora J Muyou and Sheila Miriam Mujin and Nabihah Ali and Norsyahida Md Taib and S Muhammad Izuddin Rabbani Mohd Zali and Rahmat Dapari and Zahir Izuan Azhar and Koay Teng Khoon (2023) Spatio-temporal analysis of dengue cases in Sabah. Malaysian Journal of Medicine and Health Sciences, 19 (supp20). pp. 1-7. ISSN 2636-9346
spellingShingle RA643-645 Disease (Communicable and noninfectious) and public health
Priya Dharishini Kunasagran
Syed Sharizman Syed Abdul Rahim
Mohammad Saffree Jeffree
Azman Atil
Aizuddin Hidrus
Khalid Mokti
Mohammad Aklil Abd Rahim
Adora J Muyou
Sheila Miriam Mujin
Nabihah Ali
Norsyahida Md Taib
S Muhammad Izuddin Rabbani Mohd Zali
Rahmat Dapari
Zahir Izuan Azhar
Koay Teng Khoon
Spatio-temporal analysis of dengue cases in Sabah
title Spatio-temporal analysis of dengue cases in Sabah
title_full Spatio-temporal analysis of dengue cases in Sabah
title_fullStr Spatio-temporal analysis of dengue cases in Sabah
title_full_unstemmed Spatio-temporal analysis of dengue cases in Sabah
title_short Spatio-temporal analysis of dengue cases in Sabah
title_sort spatio temporal analysis of dengue cases in sabah
topic RA643-645 Disease (Communicable and noninfectious) and public health
url https://eprints.ums.edu.my/id/eprint/42554/1/FULL%20TEXT.pdf
work_keys_str_mv AT priyadharishinikunasagran spatiotemporalanalysisofdenguecasesinsabah
AT syedsharizmansyedabdulrahim spatiotemporalanalysisofdenguecasesinsabah
AT mohammadsaffreejeffree spatiotemporalanalysisofdenguecasesinsabah
AT azmanatil spatiotemporalanalysisofdenguecasesinsabah
AT aizuddinhidrus spatiotemporalanalysisofdenguecasesinsabah
AT khalidmokti spatiotemporalanalysisofdenguecasesinsabah
AT mohammadaklilabdrahim spatiotemporalanalysisofdenguecasesinsabah
AT adorajmuyou spatiotemporalanalysisofdenguecasesinsabah
AT sheilamiriammujin spatiotemporalanalysisofdenguecasesinsabah
AT nabihahali spatiotemporalanalysisofdenguecasesinsabah
AT norsyahidamdtaib spatiotemporalanalysisofdenguecasesinsabah
AT smuhammadizuddinrabbanimohdzali spatiotemporalanalysisofdenguecasesinsabah
AT rahmatdapari spatiotemporalanalysisofdenguecasesinsabah
AT zahirizuanazhar spatiotemporalanalysisofdenguecasesinsabah
AT koaytengkhoon spatiotemporalanalysisofdenguecasesinsabah