Developing Nickel/Graphene Nano Sheets as an alternative primary battery anode

In this paper, we report the development of Nickel (Ni)/Graphene Nano Sheets (GNS) as a primary battery anode. The research focuses on the effect of Ni particle sizes on the performance of Ni/GNS anode. GNS and Ni/GNS (Ni wt% from 10 to 40%) are synthesized using the modified Hummers and impregnatio...

Full description

Bibliographic Details
Main Authors: Siburian, Rikson, Paiman, Suriati, Hutagalung, Fajar, Ali, Ab Malik Marwan, Simatupang, Lisnawaty, Goei, Ronn, Rusop, Mohamad Mahmood
Format: Article
Published: Elsevier 2022
_version_ 1796983922728370176
author Siburian, Rikson
Paiman, Suriati
Hutagalung, Fajar
Ali, Ab Malik Marwan
Simatupang, Lisnawaty
Goei, Ronn
Rusop, Mohamad Mahmood
author_facet Siburian, Rikson
Paiman, Suriati
Hutagalung, Fajar
Ali, Ab Malik Marwan
Simatupang, Lisnawaty
Goei, Ronn
Rusop, Mohamad Mahmood
author_sort Siburian, Rikson
collection UPM
description In this paper, we report the development of Nickel (Ni)/Graphene Nano Sheets (GNS) as a primary battery anode. The research focuses on the effect of Ni particle sizes on the performance of Ni/GNS anode. GNS and Ni/GNS (Ni wt% from 10 to 40%) are synthesized using the modified Hummers and impregnation method. We employed the use of commercial Zn-plate as an anode reference material. The materials are characterized with XRD, EDX, SEM, TEM and electrical conductivity meter. The XRD spectra of Ni-GNS have the broad and weak peaks at 2θ = 26.77 and 44.55° identified as C (002) and Ni (111), respectively. The XRD data is consistent with data obtained from EDX analysis which showed the presence of C and Ni at 0.277 and 7.472 keV respectively. The smallest Ni particle sizes of 23.4 nm was synthesized from Ni(20%)/GNS, Interestingly, the small particle size of Ni may improve the electrical conductivity of Ni/GNS. We found that Ni(20%)/GNS (62.2 μS/cm2) has a higher electrical conductivity value than GNS (61.4 μS/cm2) with commercial primary battery anodes Zn plate showing electrical conductivities of 35 μS/cm2. We therefore proposed the potential of Ni/GNS to be developed as alternative materials for primary battery anode.
first_indexed 2024-03-06T11:13:16Z
format Article
id upm.eprints-100586
institution Universiti Putra Malaysia
last_indexed 2024-03-06T11:13:16Z
publishDate 2022
publisher Elsevier
record_format dspace
spelling upm.eprints-1005862023-09-21T08:09:24Z http://psasir.upm.edu.my/id/eprint/100586/ Developing Nickel/Graphene Nano Sheets as an alternative primary battery anode Siburian, Rikson Paiman, Suriati Hutagalung, Fajar Ali, Ab Malik Marwan Simatupang, Lisnawaty Goei, Ronn Rusop, Mohamad Mahmood In this paper, we report the development of Nickel (Ni)/Graphene Nano Sheets (GNS) as a primary battery anode. The research focuses on the effect of Ni particle sizes on the performance of Ni/GNS anode. GNS and Ni/GNS (Ni wt% from 10 to 40%) are synthesized using the modified Hummers and impregnation method. We employed the use of commercial Zn-plate as an anode reference material. The materials are characterized with XRD, EDX, SEM, TEM and electrical conductivity meter. The XRD spectra of Ni-GNS have the broad and weak peaks at 2θ = 26.77 and 44.55° identified as C (002) and Ni (111), respectively. The XRD data is consistent with data obtained from EDX analysis which showed the presence of C and Ni at 0.277 and 7.472 keV respectively. The smallest Ni particle sizes of 23.4 nm was synthesized from Ni(20%)/GNS, Interestingly, the small particle size of Ni may improve the electrical conductivity of Ni/GNS. We found that Ni(20%)/GNS (62.2 μS/cm2) has a higher electrical conductivity value than GNS (61.4 μS/cm2) with commercial primary battery anodes Zn plate showing electrical conductivities of 35 μS/cm2. We therefore proposed the potential of Ni/GNS to be developed as alternative materials for primary battery anode. Elsevier 2022-05-01 Article PeerReviewed Siburian, Rikson and Paiman, Suriati and Hutagalung, Fajar and Ali, Ab Malik Marwan and Simatupang, Lisnawaty and Goei, Ronn and Rusop, Mohamad Mahmood (2022) Developing Nickel/Graphene Nano Sheets as an alternative primary battery anode. Ceramics International, 48 (9). 12897 - 12905. ISSN 0272-8842; ESSN: 1873-3956 https://www.sciencedirect.com/science/article/pii/S0272884222001778 10.1016/j.ceramint.2022.01.162
spellingShingle Siburian, Rikson
Paiman, Suriati
Hutagalung, Fajar
Ali, Ab Malik Marwan
Simatupang, Lisnawaty
Goei, Ronn
Rusop, Mohamad Mahmood
Developing Nickel/Graphene Nano Sheets as an alternative primary battery anode
title Developing Nickel/Graphene Nano Sheets as an alternative primary battery anode
title_full Developing Nickel/Graphene Nano Sheets as an alternative primary battery anode
title_fullStr Developing Nickel/Graphene Nano Sheets as an alternative primary battery anode
title_full_unstemmed Developing Nickel/Graphene Nano Sheets as an alternative primary battery anode
title_short Developing Nickel/Graphene Nano Sheets as an alternative primary battery anode
title_sort developing nickel graphene nano sheets as an alternative primary battery anode
work_keys_str_mv AT siburianrikson developingnickelgraphenenanosheetsasanalternativeprimarybatteryanode
AT paimansuriati developingnickelgraphenenanosheetsasanalternativeprimarybatteryanode
AT hutagalungfajar developingnickelgraphenenanosheetsasanalternativeprimarybatteryanode
AT aliabmalikmarwan developingnickelgraphenenanosheetsasanalternativeprimarybatteryanode
AT simatupanglisnawaty developingnickelgraphenenanosheetsasanalternativeprimarybatteryanode
AT goeironn developingnickelgraphenenanosheetsasanalternativeprimarybatteryanode
AT rusopmohamadmahmood developingnickelgraphenenanosheetsasanalternativeprimarybatteryanode