Effect of crosslinking reagents and hydroxypropylation levels on dual-modified sago starch properties
Chemical modification is usually carried out to overcome the unstable properties of native sago starch and improve its physical properties during processing. In this study, dual-modification of sago starch was carried out. The first stage of modification was hydroxypropylation, using propylene oxide...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier Science
2003
|
Online Access: | http://psasir.upm.edu.my/id/eprint/114326/1/114326.pdf |
_version_ | 1824452387466641408 |
---|---|
author | Wattanachant, Saowakon Muhammad, K. Mat Hashim, D. Abd. Rahman, R. |
author_facet | Wattanachant, Saowakon Muhammad, K. Mat Hashim, D. Abd. Rahman, R. |
author_sort | Wattanachant, Saowakon |
collection | UPM |
description | Chemical modification is usually carried out to overcome the unstable properties of native sago starch and improve its physical properties during processing. In this study, dual-modification of sago starch was carried out. The first stage of modification was hydroxypropylation, using propylene oxide at levels ranging from 6 to 12%. This was followed by crosslinking, using three different types of crosslinking agents: a mixture of sodium trimetaphosphate (STMP) and sodium tripolyphosphate (STPP), phosphorus oxychloride and epichlorohydrin. Through hydroxypropylation, it was found that there was a significant increase in molar substitution which in turn induces an increase in crosslinking and this was seen from the marked increase in phosphorus content and degree of substitution. This was accompanied by a significant decrease in paste clarity, swelling power and solubility compared to that of the native starch. Starch that was hydroxypropylated with 10-12% propylene oxide and crosslinked by a mixture of 2% STMP and 5% STPP produced modified starch with the most desirable properties in that it exhibited no viscosity breakdown, high acid resistance, high freeze-thaw stability and improved gel texture. |
first_indexed | 2025-02-19T02:49:43Z |
format | Article |
id | upm.eprints-114326 |
institution | Universiti Putra Malaysia |
language | English |
last_indexed | 2025-02-19T02:49:43Z |
publishDate | 2003 |
publisher | Elsevier Science |
record_format | dspace |
spelling | upm.eprints-1143262025-02-05T02:47:24Z http://psasir.upm.edu.my/id/eprint/114326/ Effect of crosslinking reagents and hydroxypropylation levels on dual-modified sago starch properties Wattanachant, Saowakon Muhammad, K. Mat Hashim, D. Abd. Rahman, R. Chemical modification is usually carried out to overcome the unstable properties of native sago starch and improve its physical properties during processing. In this study, dual-modification of sago starch was carried out. The first stage of modification was hydroxypropylation, using propylene oxide at levels ranging from 6 to 12%. This was followed by crosslinking, using three different types of crosslinking agents: a mixture of sodium trimetaphosphate (STMP) and sodium tripolyphosphate (STPP), phosphorus oxychloride and epichlorohydrin. Through hydroxypropylation, it was found that there was a significant increase in molar substitution which in turn induces an increase in crosslinking and this was seen from the marked increase in phosphorus content and degree of substitution. This was accompanied by a significant decrease in paste clarity, swelling power and solubility compared to that of the native starch. Starch that was hydroxypropylated with 10-12% propylene oxide and crosslinked by a mixture of 2% STMP and 5% STPP produced modified starch with the most desirable properties in that it exhibited no viscosity breakdown, high acid resistance, high freeze-thaw stability and improved gel texture. Elsevier Science 2003 Article PeerReviewed text en http://psasir.upm.edu.my/id/eprint/114326/1/114326.pdf Wattanachant, Saowakon and Muhammad, K. and Mat Hashim, D. and Abd. Rahman, R. (2003) Effect of crosslinking reagents and hydroxypropylation levels on dual-modified sago starch properties. Food Chemistry, 80 (4). pp. 463-471. ISSN 0308-8146; eISSN: 0308-8146 https://linkinghub.elsevier.com/retrieve/pii/S030881460200314X 10.1016/S0308-8146(02)00314-X |
spellingShingle | Wattanachant, Saowakon Muhammad, K. Mat Hashim, D. Abd. Rahman, R. Effect of crosslinking reagents and hydroxypropylation levels on dual-modified sago starch properties |
title | Effect of crosslinking reagents and hydroxypropylation levels on dual-modified sago starch properties |
title_full | Effect of crosslinking reagents and hydroxypropylation levels on dual-modified sago starch properties |
title_fullStr | Effect of crosslinking reagents and hydroxypropylation levels on dual-modified sago starch properties |
title_full_unstemmed | Effect of crosslinking reagents and hydroxypropylation levels on dual-modified sago starch properties |
title_short | Effect of crosslinking reagents and hydroxypropylation levels on dual-modified sago starch properties |
title_sort | effect of crosslinking reagents and hydroxypropylation levels on dual modified sago starch properties |
url | http://psasir.upm.edu.my/id/eprint/114326/1/114326.pdf |
work_keys_str_mv | AT wattanachantsaowakon effectofcrosslinkingreagentsandhydroxypropylationlevelsondualmodifiedsagostarchproperties AT muhammadk effectofcrosslinkingreagentsandhydroxypropylationlevelsondualmodifiedsagostarchproperties AT mathashimd effectofcrosslinkingreagentsandhydroxypropylationlevelsondualmodifiedsagostarchproperties AT abdrahmanr effectofcrosslinkingreagentsandhydroxypropylationlevelsondualmodifiedsagostarchproperties |