A review on physicochemical and thermorheological properties of sago starch
This study was a part of a research project aiming to investigate the texture characteristics of protein - starch interaction in fish based product keropok lekor. Accordingly, the current review study focused on some physicochemical (molecular weight, viscosity, chemical composition and swelling pow...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Science Publications
2008
|
Online Access: | http://psasir.upm.edu.my/id/eprint/12839/1/ajabssp.2008.639.646.pdf |
_version_ | 1825945121011531776 |
---|---|
author | Mohamed Saeed, Mohamed Abd Elgadir Bakar, Jamilah Abbas, Kassim Ali Abdul Rahman, Russly Karim, Roselina |
author_facet | Mohamed Saeed, Mohamed Abd Elgadir Bakar, Jamilah Abbas, Kassim Ali Abdul Rahman, Russly Karim, Roselina |
author_sort | Mohamed Saeed, Mohamed Abd Elgadir |
collection | UPM |
description | This study was a part of a research project aiming to investigate the texture characteristics of protein - starch interaction in fish based product keropok lekor. Accordingly, the current review study focused on some physicochemical (molecular weight, viscosity, chemical composition and swelling power) and thermorheological (gelatinization, retrogradation and viscoelsticity) characteristics of sago starch alone and in mixtures with other ingredients such as sucrose, salts and hydroclloids. The inferred outcome of this extensive survey revealed that the gelatinisation temperature for sago-water mixture ranged from 69.4-70.1°C which was low compared to sweet potato, tania and yam starches. The role of using hydrocolloids in starch-based foods was to control the rheological properties as well as modifying the texture of the products, enhaning or modifying the gelatinization and retrogradation behaviour and improving water-holding capacity of the system. In the presence of sucrose or sodium chloride, the gelatinisation temperatures of sago starch shifted to higher temperatures and its enthalpy decreased. The addition of salts caused an elevation or depression of gelatinization temperature and gelatinization enthalpy, depending on their types and concentrations used. However, sodium chloride appeared to exhibit a maximum inhibitory effect on starch gelatinisation at a concentration of 6-9%. |
first_indexed | 2024-03-06T07:26:34Z |
format | Article |
id | upm.eprints-12839 |
institution | Universiti Putra Malaysia |
language | English |
last_indexed | 2024-03-06T07:26:34Z |
publishDate | 2008 |
publisher | Science Publications |
record_format | dspace |
spelling | upm.eprints-128392017-11-20T08:24:16Z http://psasir.upm.edu.my/id/eprint/12839/ A review on physicochemical and thermorheological properties of sago starch Mohamed Saeed, Mohamed Abd Elgadir Bakar, Jamilah Abbas, Kassim Ali Abdul Rahman, Russly Karim, Roselina This study was a part of a research project aiming to investigate the texture characteristics of protein - starch interaction in fish based product keropok lekor. Accordingly, the current review study focused on some physicochemical (molecular weight, viscosity, chemical composition and swelling power) and thermorheological (gelatinization, retrogradation and viscoelsticity) characteristics of sago starch alone and in mixtures with other ingredients such as sucrose, salts and hydroclloids. The inferred outcome of this extensive survey revealed that the gelatinisation temperature for sago-water mixture ranged from 69.4-70.1°C which was low compared to sweet potato, tania and yam starches. The role of using hydrocolloids in starch-based foods was to control the rheological properties as well as modifying the texture of the products, enhaning or modifying the gelatinization and retrogradation behaviour and improving water-holding capacity of the system. In the presence of sucrose or sodium chloride, the gelatinisation temperatures of sago starch shifted to higher temperatures and its enthalpy decreased. The addition of salts caused an elevation or depression of gelatinization temperature and gelatinization enthalpy, depending on their types and concentrations used. However, sodium chloride appeared to exhibit a maximum inhibitory effect on starch gelatinisation at a concentration of 6-9%. Science Publications 2008 Article PeerReviewed application/pdf en http://psasir.upm.edu.my/id/eprint/12839/1/ajabssp.2008.639.646.pdf Mohamed Saeed, Mohamed Abd Elgadir and Bakar, Jamilah and Abbas, Kassim Ali and Abdul Rahman, Russly and Karim, Roselina (2008) A review on physicochemical and thermorheological properties of sago starch. American Journal of Agricultural and Biological Sciences, 3 (4). pp. 639-646. ISSN 1557-4989; ESSN: 1557-4997 http://www.thescipub.com/abstract/?doi=ajabssp.2008.639.646 10.3844/ajabssp.2008.639.646 |
spellingShingle | Mohamed Saeed, Mohamed Abd Elgadir Bakar, Jamilah Abbas, Kassim Ali Abdul Rahman, Russly Karim, Roselina A review on physicochemical and thermorheological properties of sago starch |
title | A review on physicochemical and thermorheological properties of sago starch |
title_full | A review on physicochemical and thermorheological properties of sago starch |
title_fullStr | A review on physicochemical and thermorheological properties of sago starch |
title_full_unstemmed | A review on physicochemical and thermorheological properties of sago starch |
title_short | A review on physicochemical and thermorheological properties of sago starch |
title_sort | review on physicochemical and thermorheological properties of sago starch |
url | http://psasir.upm.edu.my/id/eprint/12839/1/ajabssp.2008.639.646.pdf |
work_keys_str_mv | AT mohamedsaeedmohamedabdelgadir areviewonphysicochemicalandthermorheologicalpropertiesofsagostarch AT bakarjamilah areviewonphysicochemicalandthermorheologicalpropertiesofsagostarch AT abbaskassimali areviewonphysicochemicalandthermorheologicalpropertiesofsagostarch AT abdulrahmanrussly areviewonphysicochemicalandthermorheologicalpropertiesofsagostarch AT karimroselina areviewonphysicochemicalandthermorheologicalpropertiesofsagostarch AT mohamedsaeedmohamedabdelgadir reviewonphysicochemicalandthermorheologicalpropertiesofsagostarch AT bakarjamilah reviewonphysicochemicalandthermorheologicalpropertiesofsagostarch AT abbaskassimali reviewonphysicochemicalandthermorheologicalpropertiesofsagostarch AT abdulrahmanrussly reviewonphysicochemicalandthermorheologicalpropertiesofsagostarch AT karimroselina reviewonphysicochemicalandthermorheologicalpropertiesofsagostarch |