Extracting and integrating multimodality features via multidimensional approach for video retrieval
This work discusses the application of an Artificial Intelligence technique called data extraction and a process-based ontology in constructing experimental qualitative models for video retrieval and detection. We present a framework architecture that uses multimodality features as the knowledge rep...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English English |
Published: |
2009
|
Subjects: | |
Online Access: | http://psasir.upm.edu.my/id/eprint/14678/1/Extracting%20and%20integrating%20multimodality%20features%20via%20multidimensional%20approach%20for%20video%20retrieval.pdf |
_version_ | 1796968693248294912 |
---|---|
author | Abdullah, Lili Nurliyana Noah, S.A.M. Khalid, Fatimah |
author_facet | Abdullah, Lili Nurliyana Noah, S.A.M. Khalid, Fatimah |
author_sort | Abdullah, Lili Nurliyana |
collection | UPM |
description | This work discusses the application of an Artificial Intelligence technique called data extraction and a process-based ontology in constructing experimental qualitative models for video retrieval and detection. We present a framework architecture that uses multimodality features as the knowledge representation scheme to model the behaviors of a number of human actions in the video scenes. The main focus of this paper placed on the design of two main components (model classifier and inference engine) for a tool abbreviated as VSAD (Video Action Scene Detector) for retrieving and detecting human actions from video scenes. The discussion starts by presenting the workflow of the retrieving and detection process and the automated model classifier construction logic. We then move on to demonstrate how the constructed classifiers can be used with multimodality features for detecting human actions. Finally, behavioral explanation manifestation is discussed. The simulator is implemented in bilingual; Math Lab and C++ are at the backend supplying data and theories while Java handles all front-end GUI and action pattern updating. |
first_indexed | 2024-03-06T07:32:05Z |
format | Article |
id | upm.eprints-14678 |
institution | Universiti Putra Malaysia |
language | English English |
last_indexed | 2024-03-06T07:32:05Z |
publishDate | 2009 |
record_format | dspace |
spelling | upm.eprints-146782015-11-23T08:59:57Z http://psasir.upm.edu.my/id/eprint/14678/ Extracting and integrating multimodality features via multidimensional approach for video retrieval Abdullah, Lili Nurliyana Noah, S.A.M. Khalid, Fatimah This work discusses the application of an Artificial Intelligence technique called data extraction and a process-based ontology in constructing experimental qualitative models for video retrieval and detection. We present a framework architecture that uses multimodality features as the knowledge representation scheme to model the behaviors of a number of human actions in the video scenes. The main focus of this paper placed on the design of two main components (model classifier and inference engine) for a tool abbreviated as VSAD (Video Action Scene Detector) for retrieving and detecting human actions from video scenes. The discussion starts by presenting the workflow of the retrieving and detection process and the automated model classifier construction logic. We then move on to demonstrate how the constructed classifiers can be used with multimodality features for detecting human actions. Finally, behavioral explanation manifestation is discussed. The simulator is implemented in bilingual; Math Lab and C++ are at the backend supplying data and theories while Java handles all front-end GUI and action pattern updating. 2009 Article PeerReviewed application/pdf en http://psasir.upm.edu.my/id/eprint/14678/1/Extracting%20and%20integrating%20multimodality%20features%20via%20multidimensional%20approach%20for%20video%20retrieval.pdf Abdullah, Lili Nurliyana and Noah, S.A.M. and Khalid, Fatimah (2009) Extracting and integrating multimodality features via multidimensional approach for video retrieval. International Journal of Computer Science and Network Security, 9 (2). pp. 252-257. ISSN 1738-7906 Information storage and retrieval systems. Image processing - Digital techniques. Digital video. English |
spellingShingle | Information storage and retrieval systems. Image processing - Digital techniques. Digital video. Abdullah, Lili Nurliyana Noah, S.A.M. Khalid, Fatimah Extracting and integrating multimodality features via multidimensional approach for video retrieval |
title | Extracting and integrating multimodality features via multidimensional approach for video retrieval |
title_full | Extracting and integrating multimodality features via multidimensional approach for video retrieval |
title_fullStr | Extracting and integrating multimodality features via multidimensional approach for video retrieval |
title_full_unstemmed | Extracting and integrating multimodality features via multidimensional approach for video retrieval |
title_short | Extracting and integrating multimodality features via multidimensional approach for video retrieval |
title_sort | extracting and integrating multimodality features via multidimensional approach for video retrieval |
topic | Information storage and retrieval systems. Image processing - Digital techniques. Digital video. |
url | http://psasir.upm.edu.my/id/eprint/14678/1/Extracting%20and%20integrating%20multimodality%20features%20via%20multidimensional%20approach%20for%20video%20retrieval.pdf |
work_keys_str_mv | AT abdullahlilinurliyana extractingandintegratingmultimodalityfeaturesviamultidimensionalapproachforvideoretrieval AT noahsam extractingandintegratingmultimodalityfeaturesviamultidimensionalapproachforvideoretrieval AT khalidfatimah extractingandintegratingmultimodalityfeaturesviamultidimensionalapproachforvideoretrieval |